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Abstract. We present a refinement of Ramsey numbers by considering graphs with a partial ordering on

their vertices. This is a natural extension of the ordered Ramsey numbers. We formalize situations in which

we can use arbitrary families of partially-ordered sets to form host graphs for Ramsey problems. We explore

connections to well studied Turán-type problems in partially-ordered sets, particularly those in the Boolean

lattice. We find a strong difference between Ramsey numbers on the Boolean lattice and ordered Ramsey

numbers when the partial ordering on the graphs have large antichains.

1. Introduction

Ramsey and Turán problems are fundamental to graph theory. Turán problems focus on the maximum

size of objects that forbid a certain substructure whereas Ramsey problems concern partitioning an object

into parts where each part forbids a certain substructure. Traditionally, these problems are considered in

the domain of graphs. Recently, Ramsey problems have been extended to graphs with a total ordering

on their vertices [2, 4, 5, 7, 8, 13, 25, 26], and Turán problems have been considered within the Boolean

lattice [9, 10, 16, 17, 18, 19, 24]. We unite and generalize these concepts into Ramsey theory on partially-

ordered sets.

Ramsey numbers describe the transition where it becomes impossible to partition a complete graph into t

parts such that each part does not contain a certain subgraph. For k-uniform hypergraphs G1, . . . , Gt, the

t-color graph Ramsey number Rk(G1, . . . , Gt) is the least integer N such that any t-coloring of the edges of

the k-uniform complete graph on N vertices contains a copy of Gi in color i for some i ∈ {1, . . . , t}; when

G1 = · · ·Gt = G, we shorten the notation to Rk
t (G). Since Rk

t (Kn) is finite for all t and n, all Ramsey

numbers exist, including the generalizations we discuss in this paper. In our notation for Ramsey numbers,

we use k to emphasize that G1, . . . , Gt are k-uniform graphs.

A k-uniform ordered hypergraph is a k-uniform hypergraph G with a total order on the vertex set V (G).

An ordered hypergraph G contains another ordered hypergraph H exactly when there exists an embedding

of H in G that preserves the vertex order. For ordered k-uniform hypergraphs G1, . . . , Gt, the ordered

Ramsey number ORk(G1, . . . , Gt) is the least integer N such that every t-coloring of the edges of the

complete k-uniform graph with vertex set {1, . . . , N} contains an ordered copy of Gi in color i for some

i ∈ {1, . . . , t}. Since there is essentially one ordering of the complete graph, ORk(G1, . . . , Gt) ≤ Rk
t (Kn) for

n = max{|V (Gi)| : i ∈ {1, . . . , t}}. In general, ORk
t (G) can be much larger than Rk

t (G), such as when G is

an ordered path. Ordered Ramsey numbers on ordered paths have deep connections to the Erdős-Szekeres

Theorem and the Happy Ending Problem [12] (see [13, 26]).
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A partially-ordered set, or poset, is a pair (X,≤) where X is a set and ≤ is a relation such that ≤ is reflexive,

anti-symmetric, and transitive. A pair x, y ∈ X is comparable if x ≤ y or y ≤ x, and a k-chain is a set of k

distinct, pairwise comparable elements. A k-uniform partially-ordered hypergraph, or pograph, is a k-uniform

hypergraph H and a relation ≤ such that (V (H),≤) is a poset and every edge in the edge set E(H) is a

k-chain in (V (H),≤); note that it is not necessary that every k-chain be an edge. If G and H are k-uniform

pographs, then G contains H if there is an injection from V (H) to V (G) that preserves comparisons in H

and sends edges of H to edges of G. Let P = {Pn : n ≥ 1} be a family of posets such that Pn ⊆ Pn+1 for

each n and let H1, . . . ,Ht be k-uniform pographs. The partially-ordered Ramsey number Rk
P(H1, . . . ,Ht) is

the minimum N such that every t-coloring of the k-chains of PN contains a copy of Hi in color i for some

i ∈ {1, . . . , t}. The pographs H1, . . . ,Ht are contained within ordered hypergraphs G1, . . . , Gt by extending

the partial order to a total order; if Pn contains a chain of size ORk(G1, . . . , Gt), then Rk
P(H1, . . . ,Ht) ≤ n.

Thus, partially-ordered Ramsey numbers exist whenever the family P has unbounded height. This is not a

requirement, and we discuss several interesting poset families and their relations to other Ramsey numbers

in Section 5. For the majority of this paper, we will focus on two natural poset families and use special

notation to describe their Ramsey numbers. Let H1, . . . ,Ht be k-uniform pographs.

(1) Let Cn be a chain of n elements, C = {Cn : n ≥ 1}, and define the chain Ramsey number

CRk(H1, . . . ,Ht) = Rk
C(H1, . . . ,Ht).

(2) Let Bn be the Boolean lattice of subsets of {1, . . . , n}, B = {Bn : n ≥ 1}, and define the Boolean

Ramsey number BRk(H1, . . . ,Ht) = Rk
B(H1, . . . ,Ht).

When H1 = · · · = Ht = H, we shorten our notation to CRk
t (H) = CRk(H1, . . . ,Ht) and BRk

t (H) =

BRk(H1, . . . ,Ht). The 2-uniform chain Ramsey numbers are a slight generalization of both ordered Ramsey

numbers (if H1, . . . ,Ht are totally ordered) and the directed Ramsey numbers1 defined by Choudum and

Ponnusammy [4], which consider coloring the edges of the transitive tournament to avoid monochromatic

copies of certain directed acyclic graphs.

We mainly focus on 1- and 2-uniform Boolean Ramsey numbers, generalizing to other families only when

the proof method is identical. The 2-uniform Boolean Ramsey numbers are an interesting generalization of

2-uniform ordered Ramsey numbers, and we discuss them in Section 2. There is little interest in 1-uniform

chain Ramsey numbers of graphs as they can be determined by basic application of the pigeonhole principle.

The 1-uniform Boolean Ramsey numbers relate to the very active area of 1-uniform Turán problems in the

Boolean lattice [9, 10, 16, 17, 18, 19, 24]. This area dates back to Sperner [27] who showed that the largest

family of Bn that does not contain a comparable pair has size
(

n
bn/2c

)
. These problems ask for the largest

collection of elements in the Boolean lattice whose induced subposet does not contain a copy of a specific

poset P . Gunderson, Rödl and Sidorenko [20] and Johnston, Lu and Milans [23] considered a Ramsey-type

number for the 1-uniform case, but required the copies to be induced, which is a stronger condition than our

definition. We discuss 1-uniform Boolean Ramsey numbers in Section 3.

Finding an exact value of a Boolean Ramsey number is very difficult. We discuss computational methods to

find small Boolean Ramsey numbers in Section 4.

1.1. Notation and Common Posets. We follow standard notation from [29]. For integers m ≤ n, we let

[n] = {1, . . . , n} and [m,n] = {m,m+ 1, . . . , n− 1, n}. We use lg n = log2 n for shorthand.

1In [4] these are called ordered Ramsey numbers. See [25] for a detailed discussion about the distinction.
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Figure 1.1. The cup, cap, diamond, and butterfly pographs, respectively.
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Figure 1.2. The 2-diamond, B2, and ./.
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Figure 1.3. The matching and the crown.

For a poset P and an element x ∈ P , we use D(x) = {y ∈ P : y ≤ x} and U(x) = {y ∈ P : x ≤ y}, called

the down-set of x and the up-set of x respectively. For a t-coloring c of the 2-chains in P , an element x ∈ P ,

and a color i ∈ [t], we define the i-colored down-set of x, denoted Di(x), to be the elements y < x such that

c(yx) = i; similarly the i-colored up-set of x, denoted Ui(x), is the set of elements y > x such that c(xy) = i.

The height of a poset P , denoted h(P ), is the maximum size of a chain in P .

When we discuss 1-uniform pographs, we define only the poset and assume the set of “edges” is the same as

the set of elements. In the case of 2-uniform pographs, we have two natural options for the edge set. For a

poset (P,≤), the comparability graph is the pograph with vertex set P and an edge uv if and only if u < v.

The Hasse diagram of (P,≤) is the pograph with vertex set P and an edge uv if and only if u < v and there

does not exist an element w such that u < w and w < v; such pairs uv are cover relations. When we draw

a pograph, adjacent vertices are comparable with the comparison ordered by height. We will focus mainly

on a few natural 2-uniform pographs.

• The n-chain, denoted Cn, is the Hasse diagram of n totally-ordered elements.

• The n-dimensional Boolean lattice, denoted Bn, is the comparability graph of subsets of [n] ordered

by subset inclusion. See Figure 2(b) for a diagram of B2.
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• The r-cup, denoted ∨r, is the comparability graph of the poset with elements {x, y1, . . . , yr} where

x ≤ yi for all i (see Figure 1(a)).

• The r-cap, denoted ∧r, is the comparability graph of the poset with elements {y, x1, . . . , xr} where

xi ≤ y for all i (see Figure 1(b)).

• The r-diamond, denoted ♦r, is the Hasse diagram of the poset with elements {x, y1, . . . , yr, z} where

x ≤ yi ≤ z for all i (see Figures 1(c) and 2(a)).

• The r, s-butterfly, denoted ./sr, is the comparability graph of the poset with elements {x1, . . . , xr} ∪
{y1, . . . , ys} where xi ≤ yj for all i and j; we use ./ to denote ./22 (see Figures 1(d) and 2(c)).

• The matching of size n, denotedMn, is the comparability graph of the poset with elements {x1, . . . , xn}∪
{y1, . . . , yn} where xi ≤ yi for all i (Figure 3(a)).

• The crown graph of order n, denoted Wn, is the comparability graph of the poset with elements

{x1, . . . , xn} ∪ {y1, . . . , yn} where xi ≤ yi and xi ≤ yi+1(mod n) for all i (Figure 3(b)).

Note the difference between the 2-diamond ♦2 and the 2-dimensional Boolean lattice B2. Both pographs are

defined for the same poset, but ♦2 is the Hasse diagram and hence has one fewer edge than the comparability

graph in B2. This distinction leads to different values of 2-uniform Boolean Ramsey numbers; see Section 4.

Additionally, keep in mind that we often use the same symbol to denote both the 1- and 2-uniform pographs

associated with a given poset. Whether we are discussing the 1- or 2-uniform case will always be clear from

context.

2. 1-Uniform Boolean Ramsey Numbers

For a poset P , define e(P ) to be the maximum m such that, for all n, the union of the middle m levels of

Bn does not contain a copy of P . The parameter e(P ) is very common in the study of Turán-type problems

in posets.

Proposition 2.1. Let P1, . . . , Pt be posets. If M is the least integer such that Pi ⊆ BM for all i, then

max

{
M,

t∑
i=1

e(Pi)

}
≤ BR1(P1, . . . , Pt) ≤

t∑
i=1

(|Pi| − 1).

Proof. The upper bound follows from the fact that Bn contains a chain of length n+ 1 and that Pi ⊆ C|Pi|.

For the lower bound, let n =
∑t

i=1 e(Pi) − 1. For v ∈ Bn with |v| ∈
[∑i−1

j=1 e(Pj),
∑i

j=1 e(Pj)− 1
]
, let

c(v) = i. Thus c−1(i) is the union of e(Pi) consecutive levels of Bn, so c avoids copies of Pi in color i for all

i. �

Later in this section, we will demonstrate situations in which the lower bound in Proposition 2.1 is not tight,

but we believe that the lower bound is essetially correct in a sense that we will make exact later. To this

end, we believe that the upper bound in Proposition 2.1 is far from tight in most cases and conjecture that

the upper bound is tight only when each Pi is a chain (and hence e(Pi) = |Pi| − 1).

The remainder of this section sets out to determine the 1-uniform Boolean Ramsey numbers of various posets.

Theorem 2.2. For positive integers n1, . . . , nt, BR1(Bn1 , Cn2 , . . . , Cnt) = n1 +
∑t

i=2(ni − 1).

Proof. The lower bound follows from Proposition 2.1, so we need only show the upper bound.
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We first prove that BR1(Bn, Cm) ≤ n + m − 1 by induction on m. For m = 1, the result is immediate as

any use of color 2 creates a chain of order 1. Suppose that m ≥ 2 and let N = n + m − 1. Let c be any

2-coloring of BN and suppose that c avoids copies of Cm in color 2; we will show that c must admit a copy

of Bn in color 1. Let L be the family of subsets of [N −1]. As L is a copy of BN−1, the induction hypothesis

states that c restricted to L must admit either a copy of Bn in color 1 or a copy of Cm−1 in color 2. If the

former holds, then we are done. Otherwise, c restricted to L admits a copy of Cm−1 in color 2. Suppose

that X1, . . . , Xs are the copies of Cm−1 in color 2 contained in L. Because c avoids copies of Cm in color 2,

we see that the elements in
⋃s

i=1 (U(maxXi) \maxXi) all have color 1. Let U =
⋃s

i=1 U(maxXi) ∩ L and

let U ′ = {Y ∪ {N} : Y ∈ U}. Notice that U ′ ⊆
⋃s

i=1 (U(maxXi) \maxXi), so U ′ contains only elements of

color 1. Furthermore, it is easily seen that BN−1 embeds into (L \ U) ∪ U ′ as U ∼= U ′ and U ′ is an up-set.

However, c restricted to (L \ U) ∪ U ′ does not contain any copies of Cm−1 in color 2, so by the induction

hypothesis, it must admit a copy of Bn in color 1 as needed. We conclude that BR1(Bn, Cm) ≤ N .

Now that we have proved that BR1(Bn, Cm) = n + m − 1, the t-color version follows quickly. Let m =

1 +
∑t

i=2(ni − 1) and N = n1 + m − 1.. From the 2-color case, BR1(Bn1
, Cm) = N = n1 +

∑t
i=2(ni − 1).

Thus, if c is a t-coloring of BN , then either c admits a copy of Bn1
in color 1 or there exists a copy of Cm

where all elements have color in {2, . . . , t}. If there is a copy of Bn1
in color 1, then we are done. If not,

since m = 1 +
∑t

i=2(ni − 1), there exists a chain of size ni within the copy of Cm that has color i for some

i ∈ {2, . . . , t} by the pigeonhole principle. �

A common tool in studying Turán-type questions in posets is known as the Lubell function. For a family

F ⊆ Bn, the Lubell function of F is defined as

lun(F) =
∑
F∈F

(
n

|F |

)−1
.

The Lubell function of F can be interpreted as the average size of |F ∩ C| where C is a full chain in Bn.

An alternate interpretation is that lun(F) is the expected number of elements of F that are visited by a

random walk from the empty set to the full set along the Hasse diagram of Bn. Using either interpretation,

it is straightforward to observe that |F| ≤ lun(F)
(

n
bn/2c

)
. It is due to this observation that Lubell functions

of P -free families have received a great deal of attention, as bounds on the Lubell function help answer

Turán-type questions in the Boolean lattice. We apply Lubell functions to attain bounds on the 1-uniform

Boolean Ramsey number by calling upon linearity, i.e. if F ∩ G = ∅, then lun(F ∪ G) = lun(F) + lun(G).

Johnston, Lu and Milans [23] use Lubell functions to explore a question similar to the 1-uniform Boolean

Ramsey number. For two posets P and Q, we say that Q contains an induced copy of P if there is an

injection φ : P → Q where x ≤P y if and only if φ(x) ≤Q φ(y). Johnston, Lu and Milans show that if

N ≥ (2t)2
n−1

+ 1, then any t-coloring of BN contains a monochromatic induced copy of Bn. This implies

that

BR1
t (Bn) ≤ (2t)2

n−1

+ 1.

The trivial upper bound in Proposition 2.1 shows that BR1
t (Bn) ≤ t(2n− 1), so the bound attained through

looking for induced copies of Bn does not provide a good estimate of BR1
t (Bn). Despite this, we will make

use of the technique employed by Johnston, Lu and Milans to prove their doubly exponential bound. Lemma

2.3 should be seen as a formalization of this stepping stone. For a poset P , let Ln(P ) be the maximum value

lun(F) among families F ⊆ Bn such that F is P -free.

Lemma 2.3. If P1, . . . , Pt are posets and
∑t

i=1 Ln(Pi) < n+1 for some integer n, then BR1(P1, . . . , Pt) ≤ n.
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Proof. Let n be such that
∑t

i=1 Ln(Pi) < n+1. Let c be any t-coloring of Bn and for i ∈ [t], let Fi = c−1(i).

By linearity,

n+ 1 = lun(Bn) = lun

(
t⋃

i=1

Fi

)
=

t∑
i=1

lun(Fi).

As
∑t

i=1 Ln(Pi) < n + 1, there is some i ∈ [t] for which lun(Fi) > Ln(Pi). Hence, Fi is not Pi-free, so c

admits a copy of Pi in color i, and BR1(P1, . . . , Pt) ≤ n. �

Griggs and Li [17] define a poset P to be uniformly Lubell-bounded, or uniformly L-bounded, if Ln(P ) ≤ e(P )

for all n. By a direct application of Lemma 2.3, we find that the lower bound given in Proposition 2.1 is

tight when regarding uniformly L-bounded posets.

Proposition 2.4. If P1, . . . , Pt are uniformly L-bounded posets, then

BR1(P1, . . . , Pt) =
t∑

i=1

e(Pi).

Up until this point, we have mostly considered cases in which the lower bound in Proposition 2.1 is tight.

This, however, is not the case in general. To show this, we consider the butterfly poset. The butterfly poset

is special as De Bonis, Katona, and Swanepool [10] determined the largest ./-free family in Bn to be exactly

the middle two levels for all n, while most other results in this direction are necessarily asymptotic. This

is especially interesting as Ln(./) = 3 for all n, which is witnessed by any family consisting of a level of Bn

along with ∅ and [n]. As such, Lemma 2.3 implies that BRt(./) ≤ 3t, but this is not tight. In order to

determine BR1
t (./), we require a more careful use of the idea in Lemma 2.3. For a poset P , define

L′n(P ) = max {lun(F) : F ⊆ Bn \ {[n],∅},F is P -free} ,

This new value L′n(P ) is the maximum Lubell value of a P -free family that does not contain either the

maximal or minimal element.

Proposition 2.5. For t ≥ 1, BR1
t (./) = 2t+ 1.

Proof. Lower bound. Let c be a t-coloring of B2t defined as follows. For i ∈ [t − 1], if |x| ∈ {2i, 2i + 1},
let c(x) = i, and if |x| ∈ {0, 1, 2t}, let c(x) = t. As e(./) = 2, we see that c avoids copies of ./ in colors

1, . . . , t− 1. Further, it is easy to check that ./ does not appear in color t, so BR1
t (./) > 2t.

Upper bound. As shown by Griggs and Li [16, Theorem 5.1], L′n(./) = 2. We begin by showing that for any

n, L′n(∨2) < 2. Suppose that L′n(∨2) ≥ 2 and let F ⊆ Bn \ {[n],∅} be a ∨2-free family with lun(F) ≥ 2.

As ∨2 is contained in C3, we observe that no chain can intersect 3 elements of F , so lun(F) = 2 and every

full chain in Bn must intersect exactly 2 elements of F . Let C be any full chain in Bn and suppose that

C ∩ F = {F1, F2} with F1 ⊂ F2. Now choose C′ to be a full chain that agrees with C through F1 and avoids

F2 (note that C′ can be found as F2 6= [n]). Therefore, C′ ∩ F = {F1, F3} for some F3 6= F2. As C and C′

agree through F1, it must be that F1 ⊂ F3, so F1F2F3 forms a copy of ∨2; a contradiction. Thus, L′n(∨2) < 2

for every n.

Now let c be any t-coloring of B2t+1, and, without loss of generality, suppose that c(∅) = 1. Notice that if

c restricted to B2t+1 \ {∅} admits a copy of ∨2 in color 1, then c admits a copy of ./ in color 1. For i ∈ [t],
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define Fi = c−1(i) \ {[2t+ 1],∅}; thus, by linearity,

2t = lu2t+1(B2t+1 \ {[2t+ 1],∅}) = lu2t+1

(
t⋃

i=1

Fi

)
=

t∑
i=1

lu2t+1(Fi).

As noted earlier, L′n(./) = 2 and L′n(∨2) < 2 for any n, so L′2t+1(∨2) +
∑t

i=2 L
′
2t+1(./) < 2t. Therefore,

there is either some i ∈ {2, . . . , t} such that Fi admits a copy of ./ or F1 admits a copy of ∨2. In any case,

we arrive at a monochromatic copy of ./. �

Notice that the proof of the lower bound extends to show that for any posets P2, . . . , Pt,

BR1(./, P2, . . . , Pt) ≥ 3 +

t∑
i=2

e(Pi),

even though e(./) = 2. Even though the lower bound given in Proposition 2.1 is not always tight, we

conjecture that it is essentially correct in the following sense.

Conjecture 2.6. Let P be a poset and let M be the least integer such that P ⊆ BM . For any t ≥ 1,

BR1
t (P ) = (t− 1)e(P ) +M.

Slightly weaker than this conjecture, we believe that if P1, . . . , Pt are posets where Pi has height hi and

Pi ⊆ Bhi−1, then BR1(P1, . . . , Pt) =
∑t

i=1(hi − 1). In order to confirm this belief, it suffices to show that

BR1(Bn, Bm) = n+m. We verified this for small values of n and m; see Section 4.

To investigate the Boolean Ramsey numbers of posets with size much larger than their height, we consider

a structure that is wider than a single chain and use that to consider an extension of Lubell functions. We

use an idea that Grósz, Methuku and Tompkins [19] used to approach the Turán-type question. Let A ⊆ B
and define the interval from A to B, denoted [A,B], to be the collection of sets C where A ⊆ C ⊆ B;

we say the interval [A,B] has height m if m = |B \ A|. For a full chain A = (A0, . . . , An) in Bn where

∅ = A0 ⊂ A1 ⊂ · · ·An = [n], define the m-interval chain Cm(A) as

Cm(A) =

n−m⋃
i=0

[Ai, Ai+m] .

Grósz, Methuku and Tompkins [19] proved |Cm(A)| = (n−m+ 2)2m−1 for all m-interval chains Cm(A).

For a family F ⊆ Bn and 1 ≤ m ≤ n, define the m-interval Lubell function of F , denoted lu(m)
n (F), as

lu(m)
n (F) =

1

n!

∑
A
|F ∩ Cm(A)|

where the sum is taken over all full chains A. Observe that lu(1)
n (F) = lun(F). For a poset P define

L
(m)
n (P ) = max{lu(m)

n (F) : F ⊆ Bn, F is P -free}.

Due to the size of an m-interval chain, lu(m)
n (Bn) = (n −m + 2)2m−1. With this in mind, we arrive at a

direct extension of Lemma 2.3.

Proposition 2.7. Let P1, . . . , Pt be posets. If
∑t

i=1 L
(m)
n (Pi) < (n−m+2)2m−1 for some m with 1 ≤ m ≤ n,

then BR1(P1, . . . , Pt) ≤ n.

In order to apply Proposition 2.7 to attain a general upper bound on 1-uniform Boolean Ramsey numbers,

we will make use of the following result.
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Theorem 2.8 (Grósz, Methuku and Tompkins [19, Lemma 12]). For m ≥ 2, if P is a poset of height h(P )

and F is P -free, then for any m-interval chain Cm(A),

|F ∩ Cm(A)| ≤ |P | − 1 + (h(P )− 1)(3m− 5)2m−2.

We now provide a general upper bound on the 1-uniform Boolean Ramsey number for posets whose sizes are

large compared to their heights.

Theorem 2.9. Let P1, . . . , Pt be posets, S =
∑t

i=1(|Pi| − 1), and H =
∑t

i=1(h(Pi)− 1).

BR1(P1, . . . , Pt) ≤
(

3

2
H + 1

)(
lg

(
S

H

)
+ 1

)
.

Proof. If n = BR1(P1, . . . , Pt) − 1, then
∑t

i=1 L
(m)
n (Pi) ≥ (n − m + 2)2m−1 whenever 1 ≤ m ≤ n by

Proposition 2.7. Therefore, by Theorem 2.8,

(n−m+ 2)2m−1 ≤
t∑

i=1

L(m)
n (Pi) ≤ S + (3m− 5)2m−2H

for all 2 ≤ m ≤ n. As S ≥ H, lg
(
S
H

)
≥ 0, so set m =

⌊
2 + lg

(
S
H

)⌋
. Hence,

n ≤
(

3

2
H + 1

)
m− 5

2
H + 21−mS − 2

=

(
3

2
H + 1

)⌊
2 + lg

(
S

H

)⌋
− 5

2
H + 21−b2+lg( S

H )cS − 2

≤
(

3

2
H + 1

)(
2 + lg

(
S

H

))
− 5

2
H + 2− lg( S

H )S − 2

=
3

2
H lg

(
S

H

)
+

3

2
H + lg

(
S

H

)
<

(
3

2
H + 1

)(
lg

(
S

H

)
+ 1

)
. �

A direct application of Theorem 2.9 presents reasonable bounds on the Boolean Ramsey number of various

poset families

Corollary 2.10. For positive integers r, r1, . . . , rt, s1, . . . , st,

BR1
t (Br) ≤

(
3

2
rt+ 1

)(
lg

(
2r − 1

r

)
+ 1

)
= O(r2t),

BR1(./r1s1 , . . . , ./
rt
st) ≤

(
3

2
t+ 1

)(
lg

(
1

t

t∑
i=1

(ri + si − 1)

)
+ 1

)
,

BR1(∨r1 , . . . ,∨rs ,∧rs+1 , . . . ,∧rt) ≤
(

3

2
t+ 1

)(
lg

(
1

t

t∑
i=1

ri

)
+ 1

)
, and

BR1(♦r1 , . . . ,♦rt) ≤ (3t+ 1) lg

(
1

t

t∑
i=1

(ri + 1)

)
.

Corollary 2.10 brings to light an interesting phenomenon. If P1, . . . , Pt are posets of bounded height (h(Pi) ≤
h0 for some constant h0 not dependent on t) and s = 1

t

∑t
i=1 |Pi|, then

BR1(P1, . . . , Pt) ≤ O(t log s).
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Additionally, it is not hard to observe that ♦r is not contained in the union of k consecutive levels of

the Boolean lattice whenever r ≥ 2k−1 − 1. As such, e(♦r) ≥ blg(r + 1)c + 1, and we thus find that

BR1
t (♦r) = Θ(t log r).

Unfortunately, Theorem 2.9 does not allow us to prove that BR1
t (Br) = rt as implied by Conjecture 2.6;

however, we know that the Ramsey number is at most quadratic in r, which is much better than the näıve

bound of (2r − 1)t.

3. 2-Uniform Boolean Ramsey Numbers

We now focus on 2-uniform partially-ordered Ramsey numbers. Due to recent interest in ordered Ramsey

numbers, we will also include results concerning chain Ramsey numbers. We also will state our results in

the k-uniform case when possible.

Proposition 3.1. Let G1, . . . , Gt be k-uniform pographs.

lg CRk(G1, . . . , Gt) ≤ BRk(G1, . . . , Gt) ≤ CRk(G1, . . . , Gt)− 1.

Proof. Let N = CRk(G1, . . . , Gt). Observe that the chain CN is contained in the Boolean lattice BN−1,

so any t-coloring of the k-chains in BN−1 contains a copy of Gi in the color i for some i ∈ [t] and hence

BRk(G1, . . . , Gt) ≤ N − 1.

Let c be a t-coloring of the k-chains in CN−1 that avoids copies of Gi in color i for all i ∈ [t]. Let n = blgN−1c
and consider a linear extension π : Bn → C2n . Thus, we can t-color every k-chain A ∈ Bn using the color

c(π(A)), where π(A) is a k-chain in C2n ⊆ CN−1. Since c avoids copies of Gi in color i for all i ∈ [t], this

coloring also avoids these copies in Bn. �

Let G1, . . . , Gt be k-uniform pographs. If every linear extension of Gi is isomorphic for all i ∈ [t], then

observe that CRk(G1, . . . , Gt) = ORk(G1, . . . , Gt); pographs with this property include ∨r, ∧r, ♦r, and ./sr.

When every Gi is totally-ordered, we have another equivalence of partially-ordered Ramsey numbers.

Proposition 3.2. If G1, . . . , Gt are totally-ordered k-uniform pographs, then

BRk(G1, . . . , Gt) = CRk(G1, . . . , Gt)− 1 = ORk(G1, . . . , Gt)− 1.

Proof. The inequality BRk(G1, . . . , Gt) ≤ CRk(G1, . . . , Gt)− 1 follows from Proposition 3.1.

Let N = CRk(G1, . . . , Gt)− 1 and let c be a t-coloring of the k-chains in CN that does not contain a copy of

Gi in color i for all i ∈ [t]. Define a map ρ : BN−1 → CN by ρ(A) = |A|+1; if A1 ⊂ A2 ⊂ · · ·A` is an `-chain

in BN−1, then (ρ(A1), . . . , ρ(A`)) is an `-chain in CN . For a k-chain A1 ⊂ A2 ⊂ · · · ⊂ Ak in the Boolean

lattice BN−1, let c′(A1, . . . , Ak) = c(ρ(A1), ρ(A2), . . . , ρ(Ak). Consider a copy of Gi in BN−1. Since Gi is

totally-ordered, the elements of Gi form a chain in BN−1 and thus ρ maps the elements of Gi onto a copy of

Gi in CN . Since c avoids i-colored copies of Gi in CN , so does c′ avoid i-colored copies of Gi in BN−1. �

The above argument requires that the vertices of a totally-ordered graph occupy distinct levels in any

embedding of G into the Boolean lattice. If G is not totally-ordered, then there is a pair of vertices which

are incomparable; these two vertices may occupy the same level in an embedding of G into Bn. It seems

reasonable to expect that if G contains large antichains, then the lower bound in Proposition 3.1 should be

closer to the truth. We find this to be true for a few classes of pographs with large antichains.
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3.1. Matchings. A natural class of k-uniform pographs with large antichains are those were the k-chains

are completely independent. In the case of k-uniform matchings, we find the logarithmic bound on the

Boolean Ramsey number is essentially tight.

Theorem 3.3. Let m1 ≥ · · · ≥ mt and let Mk
m1
, . . . ,Mk

mt
be k-uniform matchings of size m1, . . . ,mt.

lg

(
km1 +

t∑
i=2

(mi − 1)

)
≤ BRk(Mk

m1
, . . . ,Mk

mt
) ≤

⌈
lg

(
1 +

t∑
i=1

(mi − 1)

)⌉
+ k − 1.

Proof. Lower bound. Observe CRk(Mk
m1
, . . . ,Mk

mt
) = Rk(Mk

m1
, . . . ,Mk

mt
) as every copy of an unordered

matching can be considered a linear extension of a partially-ordered matching. Alon, Frankl, and Lovász [1]

demonstrated that if m1 ≥ · · · ≥ mt, then Rk(Mk
m1
, . . . ,Mk

mt
) = km1 +

∑t
i=1(mi − 1). Apply Proposition

3.1 to complete the lower bound.

Upper bound. Let N =
⌈
lg
(

1 +
∑t

i=1(mi − 1)
)⌉

and let c be a t-coloring of the k-chains in BN+k−1. Let

X be the family of subsets of [N ] within BN+k−1. For every set A ∈ X, define the extension of A to be the

k-chain ext(A) = (A,A ∪ {N + 1}, A ∪ {N + 2}, . . . , A ∪ {N + 1, . . . , N + k − 1}). For i ∈ [t], define the set

Ti to be the sets A ∈ X where c(ext(A)) = i. Since |X| = 2N ≥ 1 +
∑k

i=1(mi − 1), the pigeonhole principle

implies that |Ti| ≥ mi for some i. The collection of k-chains ext(A) for A ∈ Ti form an i-colored matching

of size at least mi. �

Matchings are usually much simpler than other graphs. Indeed, we limit our focus to 2-uniform pographs

for the remainder of this section.

3.2. Cups and Caps. We now focus on the Boolean Ramsey numbers of r-caps and r-cups. To begin, the

following proposition follows directly from the pigeonhole principle by considering all ri-cups with minimum

element ∅ or all ri-caps with maximum element [N ].

Proposition 3.4. For positive integers r1, . . . , rt,

BR2(∨r1 , . . . ,∨rt) = BR2(∧r1 , . . . ,∧rt) =

⌈
lg

(
2 +

t∑
i=1

(ri − 1)

)⌉
.

While the Boolean Ramsey number was simple to compute when considering a collection of cups or a

collection of caps, the Ramsey numbers become more complicated when considering a collection of both

cups and caps. This next proposition states that knowing the 2-color partially-ordered Ramsey number for

cup verses cap is sufficient to determine the multicolor Ramsey number.

Proposition 3.5. Let R = 1 +
∑n

i=1(ri − 1) and S = 1 +
∑m

i=1(si − 1).

CR2(∨r1 , . . . ,∨rn ,∧s1 , . . . ,∧sm) = CR2(∨R,∧S), and

BR2(∨r1 , . . . ,∨rn ,∧s1 , . . . ,∧sm) = BR2(∨R,∧S).

Proof. We prove equality by demonstrating both inequalities.

(≤) Consider an (n + m)-coloring c of the edges of either a chain CN or a Boolean lattice BN . Let c′ be

a 2-coloring where c′(e) = 1 if c(e) ≤ n and c′(e) = 2 if c(e) > n. If c avoids i-colored copies of ∨ri and

(n+ j)-colored copies of ∧sj , then c′ avoids 1-colored copies of ∨R and 2-colored copies of ∧S .



RAMSEY NUMBERS FOR PARTIALLY-ORDERED SETS 11

(≥) Let c be a 2-coloring of the edges of either a chain CN or a Boolean lattice BN and suppose that c does

not contain a copy of ∨R in color 1 or a copy of ∧S in color 2. We will construct an (n+m)-coloring c. Since

c does not contain a 1-colored copy of ∨R, we have |U1(v)| < R; partition U1(v) into n parts P1 ∪ · · · ∪ Pn

such that |Pi| ≤ ri − 1 and let c′(vu) = i if u ∈ Pi. Since c does not contain a 2-colored copy of ∧S , we have

|D2(v)| < S; partition D2(v) into m parts P1 ∪ · · · ∪ Pm such that |Pj | ≤ sj − 1 and let c′(vu) = n + j if

u ∈ Pj . Every edge is colored exactly once by the process above and hence c′ avoids i-colored copies of ∨ri
and (n+ j)-colored copies of ∧sj . �

Choudum and Ponnusamy [4] determined CR2(∨r,∧s) exactly.

Theorem 3.6 (Choudum and Ponnusamy [4]). For integers r, s ≥ 2,

CR2(∨r,∧s) =

⌊√
1 + 8(r − 1)(s− 1)− 1

2

⌋
+ r + s.

Observe that this implies CR2(∨r,∧s) ≤ (1 +
√

2)(r + s). Therefore, by applying Proposition 3.5, we see

that

CR2(∨r1 , . . . ,∨rn ,∧s1 , . . . ,∧sm) =

⌊√
1 + 8(R− 1)(S − 1)− 1

2

⌋
+R+ S ≤ (1 +

√
2)(R+ S),

where R = 1 +
∑n

i=1(ri − 1) and S = 1 +
∑m

i=1(si − 1).

In contrast to the linear bound of chain Ramsey numbers, the following theorem shows that the Boolean

Ramsey numbers for cups and caps is logarithmic.

Theorem 3.7. For integers r, s ≥ 2,

lg

(⌊√
1 + 8(r − 1)(s− 1)− 1

2

⌋
+ r + s

)
≤ BR2(∨r,∧s) ≤

⌈
log3/2(r + s− 1)

⌉
.

Proof. Lower Bound. The lower bound follows from Theorem 3.6 and applying Proposition 3.1.

Upper Bound. Let N =
⌈
log3/2(r + s− 1)

⌉
and suppose that c is a 2-coloring of the edges of BN that avoids

copies of ∨r in color 1 and avoids copies of ∧s in color 2. Thus, for any v ∈ BN , |U1(v)| ≤ r − 1 and

|D2(v)| ≤ s− 1. In particular, this implies that |D1(v)| = |D(v)| − 1− |D2(v)| ≥ 2|v| − s.

Let W = BN \ {[N ]} and let T be the set of elements v in W where |U1(v)∩W | = r− 1. As c avoids copies

of ∨r in color 1, for any v ∈ T , c(v, [N ]) = 2. Hence, |T | ≤ s− 1 since c avoids copies of ∧s in color 2.

Let b be the number of edges uv with c(uv) = 1 and both u and v are in W , then

b =
∑
v∈W
|D1(v)| ≥

∑
v∈W

(2|v| − s) =

n−1∑
i=0

(
N

i

)
2i − s(2N − 1) = 3N − 2N (s+ 1) + s.
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On the other hand,

b =
∑
v∈W
|U1(v) ∩W |

=
∑
v∈T

(r − 1) +
∑

v∈W\T

|U1(v) ∩W |

≤ |T |(r − 1) + (2N − 1− |T |)(r − 2)

= |T |+ (2N − 1)(r − 2)

≤ s− 1 + (2N − 1)(r − 2).

Therefore, 3N − 2N (s+ 1) + s ≤ b ≤ s− 1 + (2N − 1)(r − 2), so(
3

2

)N

≤ r + s− 1− (r − 1)2−N < r + s− 1.

This, however, is a contradiction as N =
⌈
log3/2(r + s− 1)

⌉
. �

By applying Proposition 3.5, observe that

lg

(⌊√
1 + 8(R− 1)(S − 1)− 1

2

⌋
+R+ S

)
≤ BR2(∨r1 , . . . ,∨rn ,∧s1 , . . . ,∧sm) ≤

⌈
log3/2(R+ S − 1)

⌉
,

where R = 1 +
∑n

i=1(ri − 1) and S = 1 +
∑m

i=1(si − 1).

3.3. Diamonds. An r-diamond combines the behavior of an r-cup with an r-cap. Despite doubling the

number of edges in the pograph, we find similar logarithmic behavior in the Boolean Ramsey numbers.

However, our methods focus on the 2-color case and fail to extend to the generic t-color case.

Using Theorem 3.6, Balko, Cibulka, Král and Kync̆l [2] argued that 11 ≤ CR2
2(♦2) ≤ 13 and show that the

lower bound is tight with computer assistance. We apply their technique that yields an upper bound of 13

to attain an general upper bound for the chain Ramsey number of ♦r.

Theorem 3.8. If r, s ≥ 2, then

CR2(♦r,♦s) ≤ 2 ·

⌊√
1 + 8(r − 1)(s− 1)− 1

2

⌋
+ 3(r + s)− 1

Proof. Let N = 2 ·
⌊√

1+8(r−1)(s−1)−1
2

⌋
+ 3(r + s)− 1 and suppose that c is a 2-coloring of the edges of CN

that avoids copies of ♦r in color 1 and avoids copies of ♦s in color 2. Therefore, |U1(1)∩D1(N)| ≤ r−1 and

|U2(1)∩D2(N)| ≤ s− 1. Hence, |U1(1)∩D2(N)|+ |U2(1)∩D1(N)| ≥ (N − 2)− (r− 1)− (s− 1) = N − r− s.
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By the pigeonhole principle, there is some i ∈ {1, 2} for which

|Ui(1) ∩ D3−i(N)| ≥
⌈
N − r − s

2

⌉
=

⌈⌊√
1 + 8(r − 1)(s− 1)− 1

2

⌋
+ r + s− 1

2

⌉

=

⌊√
1 + 8(r − 1)(s− 1)− 1

2

⌋
+ r + s

= CR2(∧r,∨s).

If this is true for i = 1, then c restricted to U1(1) ∩ D2(N) must admit either a ∨s in color 2, in which case

c admits a ♦s in color 2, or a ∧r in color 1, in which case c admits a ♦r in color 1. A similar contradiction

is found if the inequality holds for i = 2. �

Corollary 3.9. If s, r ≥ 2, then OR2(♦s,♦r) = CR2(♦s,♦r) ≤ (3 +
√

2)(r + s) ≈ 4.414(r + s).

This upper bound is asymptotically correct, up to the leading constant.

Proposition 3.10. If s ≥ r ≥ 2, then OR2(♦s,♦r) = CR2(♦s,♦r) > 2s+ 2.

Proof. Let N = 2s + 2 and consider X1 = {1, . . . , s + 1} and X2 = {s + 2, . . . , N}. If an edge has both

endpoints in Xi for some i, then color that edge with color 1. If an edge has one endpoint in X1 and another

in X2, then color that edge with color 2. Observe that there is no ♦r in color 2, as there is no chain of length

2 in color 2. Further, there is no ♦s in color 1, as such a subgraph would be entirely contained in X1 or X2,

but these sets have size s+ 1 and |V (♦s)| = s+ 2. �

Note that Proposition 3.10 immediately implies that if s ≥ r ≥ 2, then BR2(♦s,♦r) ≥ lg(2s+ 3).

To investigate and upper bound on the Boolean Ramsey numbers of diamonds, we first consider diamonds

and cups (Theorem 3.11) before completing the argument for two diamonds (Theorem 3.12).

Theorem 3.11. Let s, r ≥ 2 be integers.

BR2(♦s,∨r) ≤ BR2(∧s+r,∨r) ≤
⌈
log3/2(2r + s− 1)

⌉
Proof. The second inequality holds by Theorem 3.7. Let N = BR2(∧s+r,∨r) and consider a 2-coloring of

the edges of BN and suppose the 2-coloring does not contain an s-diamond in color 1 or an r-cup in color 2.

Therefore, there is an (s+ r)-cap in color 1. Let A0, A1, . . . , As+r−1, B be the sets in this cap where Ai ⊆ B
for all i. If the empty set is in the cap, then let A0 = ∅. There are s+ r edges from the empty set to the sets

Ai with i ∈ {1, . . . , s + r − 1}. Since the coloring avoids r-cups in color 2, there must be at least s sets Ai

such that the edge (∅, Ai) has color 1. Thus, these Ai’s along with the empty set and B forms an s-diamond

of color 1; a contradiction. �

Theorem 3.12. Let s, r ≥ 2 be integers.

BR2(♦s,♦r) ≤ BR2(♦s,∨s+r−1) + dlg(2s+ 2r)e ≤ 2
⌈
log3/2(2r + 2s− 1)

⌉
.

Proof. The second inequality holds by Theorem 3.11 and logarithmic identities. Let N = BR2(♦s,∨s+r−1)

and M = dlg(2s+ 2r)e. Consider a 2-coloring c of the edges of BN+M . Suppose for the sake of contradiction

that c does not contain an s-diamond in color 1 and does not contain an r-diamond in color 2.
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For j ∈ {1, 2}, let Ij contain the sets Z such that [N ] ⊂ Z ⊂ [N + M ]. and c(Z, [N + M ]) = j. Since

|I1∪I2| = 2M −2 ≥ 2s+2r−2, either |I1| ≥ s+r−1 or |I2| ≥ s+r−1. We will assume that |I1| ≥ s+r−1;

the other case follows by a symmetric argument. Let I ⊆ I1 with |I| = s+ r − 1.

Since N = BR2(♦s,∨s+r−1), and c does not contain an s-diamond in color 1, there exists an (s + r − 1)-

cup of color 2 in D([N ]). Let A0, B1, . . . , Bs+r−1 be the sets of this cup such that A0 ⊂ Bj for each

j ∈ {1, . . . , s + r − 1}. Notice that Bj ⊂ Z for all j ∈ {1, . . . , s + r − 1} and all Z ∈ I. The edges between

B1, . . . , Bs+r−1 and the sets Z ∈ I form a 2-colored copy of the complete bipartite graph Ks+r−1,s+r−1.

For every j ∈ {1, . . . , s + r − 1} there are at most s − 1 edges of color 1 from Bj to the sets Z ∈ I, since

c avoids s-diamonds in the color 1. For every Z ∈ I, there are at most r − 1 edges of color 2 from the

sets B1, . . . , Bs+r−1 to Z, since c avoids r-diamonds in the color 2. However, this implies that the total

number of edges in this complete bipartite graph is at most (s+ r − 1)((s− 1) + (r − 1)) < (s+ r − 1)2, a

contradiction. �

Using Theorems 3.11 and 3.12, we find BR2(♦2,∨3) ≤ 5 and BR2(♦2,♦2) ≤ 8. With a more specialized

argument for the case r = s = 2, one can prove BR2(♦2,♦2) ≤ BR2(♦2,∨3) + 2, but this is not tight. In the

next section, we discuss computational methods to compute Boolean Ramsey numbers, and we verify that

BR2(♦2,∨3) = 4 and BR2(♦2,♦2) = 5.

4. Computational Results

Ramsey numbers are difficult to compute in all but the simplest of cases. A näıve algorithm for testing

Rk
t (G) > n takes O(tn

k

) steps, and advanced algorithm techniques do not improve on the asymptotic growth

of this method. However, using the same method to test BRk
t (G) > n can require O(t(k+1)n) steps. In fact,

simply storing a t-coloring of the k-chains in Bn requires (k+ 1)n lg t bits of space. This makes finding exact

values of 2-color, 2-uniform Boolean Ramsey numbers very difficult once n ≥ 5.

To test if BR2(H1, H2) > n, we use a SAT formulation to determine if there exists a 2-coloring c of the

comparable pairs in Bn that avoids copies of H1 in color 1 and avoids copies of H2 in color 2. For every

comparable pair A ⊂ B, we let xA,B be a Boolean variable; the variable xA,B is true exactly when c(A,B) = 1.

For every copy of H1 in Bn, we create a constraint that requires at least one variable xA,B to be false among

the edges (A,B) in the copy of H1. Similarly, for every copy of H2 in Bn, we create a constraint that

requires at least one variable xA,B to be true among the edges (A,B) in the copy of H2. There exists such

a 2-coloring if and only if these constraints can be simultaneously satisfied.

We used a similar SAT formulation to demonstrate that BR1(Bn, Bm) > n+m−1 (formulation is satisfiable)

and BR1(Bn, Bm) ≤ n+m (formulation is unsatisfiable) when 3 ≥ n ≥ m ≥ 1.

We used Sage [28] to construct our SAT formulations in SMT2 format. We then used the Microsoft Z3 [11]

SMT2 solver to test the formulations. The results are summarized in Table 1. These computations were

completed using a standard laptop computer with each test taking at most a few hours. All Sage code and

SAT formulations are available online3.

This method was limited by the exponential growth in the size of the formulations more than the time it

takes to solve them. We selected only a few examples to test with n = 5 due to the number of copies of the

2Satisfiability Modulo Theory.
3See http://orion.math.iastate.edu/dstolee/data.htm for all code and data.

http://orion.math.iastate.edu/dstolee/data.htm
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(a) BR2(∨r,∧s).

∧2 ∧3 ∧4 ∧5
∨2 3 3 4 4
∨3 3 4 5 5
∨4 4 5 5
∨5 4 5

(b) BR2(H,∧s).

∧2 ∧3 ∧4
♦2 4 4 5
B2 4 4 5
♦3 4 5 5

(c) BR2(H1, H2).

♦2 B2

♦2 5 6
B2 6 6

(d) BR2(∨r,Ms).

M2 M3 M4

∨2 3 3 4
∨3 3 4 4
∨4 4 4 4
∨5 4 4 4
∨6 4 4 4

(e) BR2(Mr,Ms).

M2 M3 M4

M2 3 3 4
M3 3 4
M4 4

(f) BR2(Cr,Ms)

M2 M3 M4

C2 2 3 3
C3 3 4 4
C4 4 5
C5 5

(g) BR2(Cr,∧s) = BR2(Cr,∨s)

∧2 ∧3 ∧4
C2 2 2 3
C3 3 3 4
C4 4 4 5

(h) BR2(∨r, ./nm) = BR2(∧r, ./mn )

./22 ./32 ./23 ./33
∨2 4 4 4 5
∨3 4 4 5 5
∨4 4 5

(i) BR2(∨r,Ws) = BR2(∧r,Ws)

W2 W3 W4 W5

∨2 4 4 4 4
∨3 4 4 4 4
∨4 4 5

Table 1. Computational results for small 2-uniform Boolean Ramsey numbers.

pographs H1 and H2 that appeared within B5. We could test BR2(B2,♦2) = BR2(B2, B2) = 6 due to the

fact that B2 and ♦2 have only four elements, which greatly limited the number of copies appear within B6,

but these tests were our largest computations.

A highly specialized algorithm may be able to extend these results to more examples when n = 6, but we

expect this will be very difficult.

5. Other Poset Families

While we have mainly focused on chain Ramsey numbers and Boolean Ramsey numbers, many other families

of posets can give rise to interesting Ramsey numbers.

5.1. Generic Poset Families. Let P = {Pn : n ≥ 1} be a poset family with Pn ⊆ Pn+1 for all n. For

a t-tuple (G1, . . . , Gt) of k-uniform pographs, we say that P is k-Ramsey for (G1, . . . , Gt) if there exists

an N such that every t-coloring of the k-chains in PN contains an i-colored copy of Gi for some i. The

partially-ordered Ramsey number Rk
P(G1, . . . , Gt) exists exactly when P is k-Ramsey for (G1, . . . , Gt).

We say a family P is a universal poset family if P is k-Ramsey for every t-tuple of k-uniform pographs and

every k ≥ 1. If the height of Pn grows without bound, then P is a universal poset family as eventually

Pn contains a chain of order CRk(G1, . . . , Gt) for any G1, . . . , Gt. Some of our results hold for universal

poset families, such as Propositions 3.5. Other results must be generalized slightly, such as the following

generalization of Proposition 3.1.

Proposition 5.1. Let P = {Pn : n ≥ 1} be a universal poset family. Define sP(n) to be the minimum N

such that |PN | ≥ n. Define hP(n) to be the minimum N such that Cn ⊆ PN . Then,

sP(CRk(G1, . . . , Gt)) ≤ Rk
P(G1, . . . , Gt) ≤ hP(CRk(G1, . . . , Gt)).
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Using the function hP(n), one can restate Proposition 3.2 as Rk
P(G1, . . . , Gt) = hP(CRk(G1, . . . , Gt)) for

totally-ordered graphs G1, . . . , Gt.

5.2. Rooted Bipartite Ramsey Numbers. A poset family does not need to be universal in order to be

interesting. Consider the family K = {./nn: n ≥ 1} of n, n-butterfly posets. This family is not universal since

C3 6⊆ ./nn for any n. However, we can still consider G1, . . . , Gt to be pographs whose posets partition into

two antichains V (Gi) = Xi ∪Yi where every x ∈ Xi is comparable to at least one element y ∈ Yi with x ≤ y.

In this case, the Ramsey number R2
K(G1, . . . , Gt) is the minimum N such that every t-coloring of the edges

of the complete bipartite graph KN,N with vertex set V (KN,N ) = A ∪ B contains an i-colored copy of the

bipartite graph Gi where Xi ⊆ A and Yi ⊆ B for some i.

If we remove the condition that Xi ⊆ A and Yi ⊆ B, then this Ramsey problem is identical to finding

bipartite Ramsey numbers (see [3, 6, 15, 21, 22]). The equivalent of the Turán problem in this context is

called the Zarenkiewicz problem (see [14, 15, 22]). The most widely studied version of these numbers are

those where Gi =./mn for some n,m.

With the condition that Xi ⊆ A and Yi ⊆ B, we can call R2
K(G1, . . . , Gt) the rooted bipartite Ramsey

number. In this case, it may be true that R2
K(./sr, ./

s
r) 6= R2

K(./sr, ./
r
s) when r 6= s. The final paragraph of

the proof of Thereom 3.12 implicitly proves and uses the fact that R2
K(∧s,∨r) = R2

K(∨s,∨r) = s+ r − 1.

5.3. High-Dimensional Grids. Closely related to the Boolean lattice is them-dimensional `-grid ([`]m,�),

whose elements are m-tuples (x1, . . . , xn) where every coordinate xi is in the set [`], and (x1, . . . , xn) �
(y1, . . . , yn) if and only if xi ≤ yi for all i (in particular, the Boolean lattice Bn corresponds to [2]n). When

constructing a universal poset family P = {Pn : n ≥ 1} from these grids, we have two natural options for the

parameter n. First, we could have the dimension grow with n; let Qn(`) = [`]n and Q(`) = {Qn(`) : n ≥ 1}.
Second, we could have the length grow with n; let Hn(m) = [n]m and H(m) = {Hn(m) : n ≥ 1}. Along

these lines, we provide analogues of theorems from Section 3 for each of these cases.

Theorem 5.2 (Analogue of Theorem 3.7). For s, r ≥ 2,

log`

(⌊√
1 + 8(r − 1)(s− 1)− 1

2

⌋
+ r + s

)
≤ R2

Q(`)(∨r,∧s) ≤
⌈
log(`+1)/2(r + s− 1)

⌉
and

(⌊√
1 + 8(r − 1)(s− 1)− 1

2

⌋
+ r + s

)1/n

≤ R2
H(m)(∨r,∧s) ≤

⌈
2(r + s− 1)1/n

⌉
− 1.

Theorem 5.3 (Analogue of Theorem 3.11). For s, r ≥ 2,

R2
Q(`)(♦s,∨r) ≤ R2

Q(`)(∧s+r,∨r) ≤
⌈
log(`+1)/2(2r + s− 1)

⌉
and

R2
H(m)(♦s,∨r) ≤ R2

H(m)(∧s+r,∨r) ≤
⌈
2(2r + s− 1)1/n

⌉
− 1.

Theorem 5.4 (Analogue of Theorem 3.12). For s, r ≥ 2,

R2
Q(`)(♦s,♦r) ≤ R2

Q(`)(♦r,∨s+r−1) + dlog`(2s+ 2r)e ≤ 2
⌈
log(`+1)/2(2r + 2s− 1)

⌉
and

R2
H(m)(♦s,♦r) ≤ R2

H(m)(♦s,∨s+r−1) +
⌈
(2s+ 2r)1/n

⌉
≤ 3

⌈
(2r + 2s− 1)1/n

⌉
.

The proof of each of these theorems are identical to their analogues in the Boolean lattice. Notice that in

each case, the Ramsey number is within a constant factor of the lower bound given in Proposition 5.1. It
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would be of interest to explore other partially-ordered Ramsey numbers using Q(`) or H(m) as the host

family.

6. Future Work

For 1-uniform Boolean Ramsey numbers, the main open question is Conjecture 2.6. It is important to point

out that Theorem 2.9 employed only the bound lu(m)
n (F) ≤ maxCm |F ∩ Cm|. It would be interesting to

explore the actual value of L
(m)
n (P ) for specific posets P .

We are particularly interested in the properties of partially-ordered graphs whose Boolean Ramsey numbers

are within a constant factor of the lower bound given in Proposition 3.1. In particular, we ask the following.

Question 6.1. What properties must a graph G have so that the lower bound on the Boolean Ramsey number

of G given in Proposition 3.1 is tight up to a constant?

We suspect that the answer to this question will focus on the properties of the underlying poset of G and

have very little to do with the actual edges of G. In particular, we suspect that the answer relies heavily on

the number and/or size of the antichains in the underlying poset.

Previously, as far as we are aware, other authors have, for the most part, only been interested in the Lubell

function of a P -free family when approaching the Turán problem in the Boolean lattice. To this end, many

Lubell functions have been ignored if they do not provide the desired bound in the Turán problem. We think

that an exploration of the Lubell functions of P -free families is interesting in and of itself. In particular, we

are interested in attaining good upper bounds on Ln(Bd). Beyond this, further exploration of the m-interval

Lubell function of P -free families may provide interesting insights into both the Ramsey and Turán problems

in the Boolean lattice.

Returning to 2-uniform Boolean Ramsey numbers, an exploration of BR2
t (Bn) would be of great interest. By

applying the bounds on R2
2(Kn), we immediately observe that Ω(2n/2) ≤ BR2

2(Bn) ≤ O(42
n

). We believe the

upper bound to be far from the truth and would expect only an exponential bound, but any improvement

to either bound would be of interest.
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