RAMSEY NUMBERS FOR PARTIALLY-ORDERED SETS

CHRISTOPHER COX! AND DERRICK STOLEE?

ABSTRACT. We present a refinement of Ramsey numbers by considering graphs with a partial ordering on
their vertices. This is a natural extension of the ordered Ramsey numbers. We formalize situations in which
we can use arbitrary families of partially-ordered sets to form host graphs for Ramsey problems. We explore
connections to well studied Turdn-type problems in partially-ordered sets, particularly those in the Boolean
lattice. We find a strong difference between Ramsey numbers on the Boolean lattice and ordered Ramsey

numbers when the partial ordering on the graphs have large antichains.

1. INTRODUCTION

Ramsey and Turdn problems are fundamental to graph theory. Turdn problems focus on the maximum
size of objects that forbid a certain substructure whereas Ramsey problems concern partitioning an object
into parts where each part forbids a certain substructure. Traditionally, these problems are considered in
the domain of graphs. Recently, Ramsey problems have been extended to graphs with a total ordering
on their vertices [2, 4, Bl 7, 8, 13l 25| 26], and Turédn problems have been considered within the Boolean
lattice [9) 10, [16] 17, 18] 9] 24]. We unite and generalize these concepts into Ramsey theory on partially-

ordered sets.

Ramsey numbers describe the transition where it becomes impossible to partition a complete graph into ¢
parts such that each part does not contain a certain subgraph. For k-uniform hypergraphs G, ..., Gy, the
t-color graph Ramsey number R¥(Gy, ..., Gy) is the least integer N such that any t-coloring of the edges of
the k-uniform complete graph on N vertices contains a copy of G; in color ¢ for some ¢ € {1,...,t}; when
G, = ---G; = G, we shorten the notation to R¥(G). Since RF(K,) is finite for all ¢ and n, all Ramsey
numbers exist, including the generalizations we discuss in this paper. In our notation for Ramsey numbers,

we use k to emphasize that Gy, ...,G; are k-uniform graphs.

A k-uniform ordered hypergraph is a k-uniform hypergraph G with a total order on the vertex set V(G).
An ordered hypergraph G contains another ordered hypergraph H exactly when there exists an embedding
of H in G that preserves the vertex order. For ordered k-uniform hypergraphs G, ..., Gy, the ordered
Ramsey number OR®(Gy,...,Gy) is the least integer N such that every t-coloring of the edges of the
complete k-uniform graph with vertex set {1,..., N} contains an ordered copy of G; in color i for some
i €{1,...,t}. Since there is essentially one ordering of the complete graph, OR*(G1,...,G;) < R¥(K,,) for
n = max{|V(G;)| : i € {1,...,t}}. In general, OR¥(G) can be much larger than R¥(G), such as when G is
an ordered path. Ordered Ramsey numbers on ordered paths have deep connections to the Erdds-Szekeres
Theorem and the Happy Ending Problem [12] (see [13] 26]).
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A partially-ordered set, or poset, is a pair (X, <) where X is a set and < is a relation such that < is reflexive,
anti-symmetric, and transitive. A pair x,y € X is comparable if x < y or y < z, and a k-chain is a set of k
distinct, pairwise comparable elements. A k-uniform partially-ordered hypergraph, or pograph, is a k-uniform
hypergraph H and a relation < such that (V(H), <) is a poset and every edge in the edge set E(H) is a
k-chain in (V(H), <); note that it is not necessary that every k-chain be an edge. If G and H are k-uniform
pographs, then G contains H if there is an injection from V(H) to V(G) that preserves comparisons in H
and sends edges of H to edges of G. Let P = {P,, : n > 1} be a family of posets such that P,, C P,,;; for
each n and let Hy, ..., H; be k-uniform pographs. The partially-ordered Ramsey number R?;(Hl, oo, Hy) is
the minimum N such that every t-coloring of the k-chains of Py contains a copy of H; in color ¢ for some
1€ {1,...,t}. The pographs Hy,..., H; are contained within ordered hypergraphs Gi,...,G; by extending
the partial order to a total order; if P, contains a chain of size OR*(Gy, ..., Gy), then R%(Hl, . Hy) <.
Thus, partially-ordered Ramsey numbers exist whenever the family P has unbounded height. This is not a
requirement, and we discuss several interesting poset families and their relations to other Ramsey numbers
in Section [f] For the majority of this paper, we will focus on two natural poset families and use special

notation to describe their Ramsey numbers. Let Hy,..., H; be k-uniform pographs.

(1) Let C,, be a chain of n elements, C = {C, : n > 1}, and define the chain Ramsey number
CR¥(H,,...,Hy) = RE(Hy, ..., Hy).

(2) Let B,, be the Boolean lattice of subsets of {1,...,n}, B = {B, : n > 1}, and define the Boolean
Ramsey number BRF(H,y, ..., H,) = RE(H, ..., Hy).

When H, = --- = H; = H, we shorten our notation to CR¥(H) = CR*(H,,..., H;) and BRF(H) =
BR” (Hy,...,H;). The 2-uniform chain Ramsey numbers are a slight generalization of both ordered Ramsey
numbers (if Hy,...,H; are totally ordered) and the directed Ramsey numberﬂ defined by Choudum and
Ponnusammy [4], which consider coloring the edges of the transitive tournament to avoid monochromatic

copies of certain directed acyclic graphs.

We mainly focus on 1- and 2-uniform Boolean Ramsey numbers, generalizing to other families only when
the proof method is identical. The 2-uniform Boolean Ramsey numbers are an interesting generalization of
2-uniform ordered Ramsey numbers, and we discuss them in Section [2] There is little interest in 1-uniform
chain Ramsey numbers of graphs as they can be determined by basic application of the pigeonhole principle.
The 1-uniform Boolean Ramsey numbers relate to the very active area of 1-uniform Turan problems in the
Boolean lattice [9] 10 [16] 17, 18] 19, 24]. This area dates back to Sperner [27] who showed that the largest
family of B,, that does not contain a comparable pair has size (LnT/LQ j)' These problems ask for the largest
collection of elements in the Boolean lattice whose induced subposet does not contain a copy of a specific
poset P. Gunderson, Rodl and Sidorenko [20] and Johnston, Lu and Milans [23] considered a Ramsey-type
number for the 1-uniform case, but required the copies to be induced, which is a stronger condition than our

definition. We discuss 1-uniform Boolean Ramsey numbers in Section

Finding an exact value of a Boolean Ramsey number is very difficult. We discuss computational methods to

find small Boolean Ramsey numbers in Section

1.1. Notation and Common Posets. We follow standard notation from [29]. For integers m < n, we let

[n] ={1,...,n} and [m,n] = {m,m+1,...,n—1,n}. We use lgn = log, n for shorthand.

"n [] these are called ordered Ramsey numbers. See [25] for a detailed discussion about the distinction.
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FiGure 1.1. The cup, cap, diamond, and butterfly pographs, respectively.
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FIGURE 1.2. The 2-diamond, By, and .
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F1GURE 1.3. The matching and the crown.

For a poset P and an element x € P, we use D(z) ={y € P:y <z} and U(z) = {y € P : z < y}, called
the down-set of x and the up-set of x respectively. For a t-coloring ¢ of the 2-chains in P, an element x € P,
and a color i € [t], we define the i-colored down-set of x, denoted D;(z), to be the elements y < x such that
c(yx) = i; similarly the i-colored up-set of x, denoted U;(x), is the set of elements y > x such that c(zy) = i.
The height of a poset P, denoted h(P), is the maximum size of a chain in P.

When we discuss 1-uniform pographs, we define only the poset and assume the set of “edges” is the same as
the set of elements. In the case of 2-uniform pographs, we have two natural options for the edge set. For a
poset (P, <), the comparability graph is the pograph with vertex set P and an edge wv if and only if u < v.
The Hasse diagram of (P, <) is the pograph with vertex set P and an edge wv if and only if u < v and there
does not exist an element w such that u < w and w < v; such pairs uv are cover relations. When we draw
a pograph, adjacent vertices are comparable with the comparison ordered by height. We will focus mainly

on a few natural 2-uniform pographs.

e The n-chain, denoted C,, is the Hasse diagram of n totally-ordered elements.
e The n-dimensional Boolean lattice, denoted B,,, is the comparability graph of subsets of [n] ordered
by subset inclusion. See Figure [2(b)| for a diagram of Bs.
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e The r-cup, denoted V,, is the comparability graph of the poset with elements {x,y1,...,y.} where
x < y; for all i (see Figure .

e The r-cap, denoted A, is the comparability graph of the poset with elements {y, z1,..., 2.} where
z; <y for all i (see Figure [[(b)).

e The r-diamond, denoted ., is the Hasse diagram of the poset with elements {x, y1,...,y., 2z} where
x <y; <z for all i (see Figures and .

e The r, s-butterfly, denoted <2, is the comparability graph of the poset with elements {z1,...,z,} U
{y1,...,ys} where z; < y; for all i and j; we use i to denote <3 (see Figures [1(d)| _ and -

e The matching of size n, denoted M,,, is the comparability graph of the poset with elements {z1, ...z, }U
{y1,...,Yn} where z; <y, for all i (Figure .

e The crown graph of order n, denoted W,, is the comparability graph of the poset with elements

{o1,.. 20} U{yr, ..., yn} where 2y < y; and @3 < Y41 (mod n) for all ¢ (Figure [3(b)).

Note the difference between the 2-diamond <, and the 2-dimensional Boolean lattice Bs. Both pographs are
defined for the same poset, but {5 is the Hasse diagram and hence has one fewer edge than the comparability

graph in B,. This distinction leads to different values of 2-uniform Boolean Ramsey numbers; see Section [4]

Additionally, keep in mind that we often use the same symbol to denote both the 1- and 2-uniform pographs
associated with a given poset. Whether we are discussing the 1- or 2-uniform case will always be clear from

context.

2. 1-UNIFORM BOOLEAN RAMSEY NUMBERS

For a poset P, define e(P) to be the maximum m such that, for all n, the union of the middle m levels of
B,, does not contain a copy of P. The parameter e(P) is very common in the study of Turdn-type problems

in posets.

Proposition 2.1. Let Py,..., P, be posets. If M is the least integer such that P; C By, for all i, then
t
maX{MZ }<BR1(P1, Z|P|71

Proof. The upper bound follows from the fact that B,, contains a chain of length n + 1 and that P; C C|p,|.
For the lower bound, let n = Y°i_ e(P;) — 1. For v € B, with |v] € [23—11 e(Pj), Z; Le(Py) — 1} let
c(v) = i. Thus ¢~1(4) is the union of e(P;) consecutive levels of B,,, so ¢ avoids copies of P; in color i for all

1. (]

Later in this section, we will demonstrate situations in which the lower bound in Proposition 2:1]is not tight,
but we believe that the lower bound is essetially correct in a sense that we will make exact later. To this
end, we believe that the upper bound in Proposition [2.1]is far from tight in most cases and conjecture that
the upper bound is tight only when each P; is a chain (and hence e(P;) = |P;| — 1).

The remainder of this section sets out to determine the 1-uniform Boolean Ramsey numbers of various posets.

Theorem 2.2. For positive integers ny, ... ,ni, BRY(B,,,Cny,...,Cn,) =11 + Zfzz(ni —1).

Proof. The lower bound follows from Proposition [2.1] so we need only show the upper bound.
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We first prove that BR'(B,,,C,,) < n +m — 1 by induction on m. For m = 1, the result is immediate as
any use of color 2 creates a chain of order 1. Suppose that m > 2 and let N = n+ m — 1. Let ¢ be any
2-coloring of By and suppose that ¢ avoids copies of C}, in color 2; we will show that ¢ must admit a copy
of B,, in color 1. Let L be the family of subsets of [N —1]. As L is a copy of By_1, the induction hypothesis
states that ¢ restricted to L must admit either a copy of B,, in color 1 or a copy of C,,_1 in color 2. If the
former holds, then we are done. Otherwise, c¢ restricted to L admits a copy of C,,_1 in color 2. Suppose
that X1,..., X, are the copies of C},_1 in color 2 contained in L. Because ¢ avoids copies of C,,, in color 2,
we see that the elements in (JI_, (U(max X;) \ max X;) all have color 1. Let U = |J;_; U(max X;) N L and
let U/ ={Y U{N}:Y € U}. Notice that U’ C |J;_, (U(max X;) \ max X;), so U’ contains only elements of
color 1. Furthermore, it is easily seen that By_; embeds into (L \ U) UU’ as U = U’ and U’ is an up-set.
However, ¢ restricted to (L \ U) U U’ does not contain any copies of Cy,_1 in color 2, so by the induction
hypothesis, it must admit a copy of B,, in color 1 as needed. We conclude that BRI(Bn, Cm) < N.

Now that we have proved that BR' (Bn,Cm) = n+m — 1, the t-color version follows quickly. Let m =
1+3' ,(n;—1) and N = ny +m — 1.. From the 2-color case, BR*(B,,,C,,) = N = n; + ZEZQ(ni —1).
Thus, if ¢ is a t-coloring of By, then either ¢ admits a copy of By, in color 1 or there exists a copy of C,
where all elements have color in {2,...,¢}. If there is a copy of B,, in color 1, then we are done. If not,
since m =1+ 2222 (n; — 1), there exists a chain of size n; within the copy of C,, that has color ¢ for some

1€ {2,...,t} by the pigeonhole principle. a

A common tool in studying Turdn-type questions in posets is known as the Lubell function. For a family
F C B, the Lubell function of F is defined as

o, (F) = 3 (“’;') N

FEF

The Lubell function of F can be interpreted as the average size of |F N C| where C is a full chain in B,.
An alternate interpretation is that lu,(F) is the expected number of elements of F that are visited by a
random walk from the empty set to the full set along the Hasse diagram of B,,. Using either interpretation,
it is straightforward to observe that |F| < lu, (F) (Ln72 j)' It is due to this observation that Lubell functions
of P-free families have received a great deal of attention, as bounds on the Lubell function help answer
Turan-type questions in the Boolean lattice. We apply Lubell functions to attain bounds on the 1-uniform
Boolean Ramsey number by calling upon linearity, i.e. if F NG = &, then lu, (F U G) = lu,(F) + lu,(9).

Johnston, Lu and Milans [23] use Lubell functions to explore a question similar to the 1-uniform Boolean
Ramsey number. For two posets P and (), we say that () contains an induced copy of P if there is an
injection ¢ : P — @ where  <p y if and only if ¢(z) <o ¢(y). Johnston, Lu and Milans show that if
N > (215)2%1 + 1, then any t-coloring of By contains a monochromatic induced copy of B,. This implies
that

BR!(B,) < (2t)*" +1.
The trivial upper bound in Proposition shows that BR}(B,,) < t(2" — 1), so the bound attained through
looking for induced copies of B,, does not provide a good estimate of BR% (By). Despite this, we will make
use of the technique employed by Johnston, Lu and Milans to prove their doubly exponential bound. Lemma
should be seen as a formalization of this stepping stone. For a poset P, let L, (P) be the maximum value

lu, (F) among families 7 C B,, such that F is P-free.

Lemma 2.3. If Py,..., P, are posets and Zle L, (P;) < n+1 for some integer n, then BR*(Py,...,P;) < n.
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Proof. Let n be such that 3X°_, L,,(P;) < n+1. Let ¢ be any t-coloring of B,, and for i € [t], let F; = ¢ (i).
By linearity,

t t
n+1=1lu,(B,) =lu, (U fi> = Zlun(Fi)-
i=1 i=1

As 3! L.(P) < n+ 1, there is some i € [t] for which lu,(F;) > L,(P;). Hence, F; is not P-free, so ¢
admits a copy of P; in color i, and BR(Py,..., P,) < n. O

Griggs and Li [I7] define a poset P to be uniformly Lubell-bounded, or uniformly L-bounded, if L, (P) < e(P)
for all n. By a direct application of Lemma we find that the lower bound given in Proposition is
tight when regarding uniformly L-bounded posets.

Proposition 2.4. If P,..., P; are uniformly L-bounded posets, then

BRY(Py,...,P) =Y e(P).

i=1

Up until this point, we have mostly considered cases in which the lower bound in Proposition is tight.
This, however, is not the case in general. To show this, we consider the butterfly poset. The butterfly poset
is special as De Bonis, Katona, and Swanepool [10] determined the largest b<-free family in B,, to be ezactly
the middle two levels for all n, while most other results in this direction are necessarily asymptotic. This
is especially interesting as L,, (1) = 3 for all n, which is witnessed by any family consisting of a level of B,,
along with & and [n]. As such, Lemma implies that BR;(<1) < 3t, but this is not tight. In order to
determine BR% (1), we require a more careful use of the idea in Lemma For a poset P, define

L, (P) = max {lu,(F) : F C B, \ {[n], @}, F is P-free},

This new value L/ (P) is the maximum Lubell value of a P-free family that does not contain either the

maximal or minimal element.

Proposition 2.5. For t > 1, BR} () = 2t + 1.

Proof. Lower bound. Let ¢ be a t-coloring of By, defined as follows. For i € [t — 1], if |z| € {2¢,2i + 1},
let e(z) = 4, and if |z| € {0,1,2t}, let c(x) = t. As e(<) = 2, we see that ¢ avoids copies of i in colors
1,...,t — 1. Further, it is easy to check that t does not appear in color ¢, so BRt1 (1) > 2t.

Upper bound. As shown by Griggs and Li [16, Theorem 5.1], L’ (1) = 2. We begin by showing that for any
n, L (V2) < 2. Suppose that L/ (V2) > 2 and let F C B, \ {[n], @} be a Va-free family with lu, (F) > 2.
As Vy is contained in C3, we observe that no chain can intersect 3 elements of F, so lu, (F) = 2 and every
full chain in B, must intersect ezactly 2 elements of F. Let C be any full chain in B,, and suppose that
CNF ={F, F>} with F; C F5. Now choose C’ to be a full chain that agrees with C through F} and avoids
F5 (note that C’ can be found as Fy # [n]). Therefore, C' N F = {Fy, F3} for some F3 # F5. As C and C’
agree through Fy, it must be that Fy C F3, so Fy F5F3 forms a copy of Va; a contradiction. Thus, L (Va) < 2

for every n.

Now let ¢ be any t-coloring of Ba;11, and, without loss of generality, suppose that ¢(@) = 1. Notice that if
c restricted to Boy \ {@} admits a copy of Vg in color 1, then ¢ admits a copy of < in color 1. For i € [¢],
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define F; = ¢ (i) \ {[2t + 1], @}; thus, by linearity,

t t
2t = 1u2t+1(B2t+1 \ {[Zt + 1], @}) = 1u2t+1 <U .7:1> = ZIUQt.H(]:i).
i=1 i=1
As noted earlier, L; (><1) = 2 and L, (V) < 2 for any n, so Ly, (V2) + S, 9¢41(>) < 2t. Therefore,
there is either some ¢ € {2,...,t} such that F; admits a copy of >t or F; admits a copy of Va. In any case,

we arrive at a monochromatic copy of . O

Notice that the proof of the lower bound extends to show that for any posets Ps, ..., P,

t
BR' (0, Py,...,P) >3+ ) _e(P),
i=2
even though e(<t) = 2. Even though the lower bound given in Proposition is not always tight, we

conjecture that it is essentially correct in the following sense.
Conjecture 2.6. Let P be a poset and let M be the least integer such that P C Bps. For anyt > 1,

BR}(P) = (t — 1)e(P) + M.

Slightly weaker than this conjecture, we believe that if P;,..., P, are posets where P; has height h; and
P, C Bp,_1, then BRY(Py,...,P) = Zzzl(hi —1). In order to confirm this belief, it suffices to show that
BRY(B,,, B;n) = n + m. We verified this for small values of n and m; see Section

To investigate the Boolean Ramsey numbers of posets with size much larger than their height, we consider
a structure that is wider than a single chain and use that to consider an extension of Lubell functions. We
use an idea that Grész, Methuku and Tompkins [I9] used to approach the Turdn-type question. Let A C B
and define the interval from A to B, denoted [A, B], to be the collection of sets C where A C C C B;
we say the interval [A, B] has height m if m = |B\ A|. For a full chain A = (Ay,...,A,) in B,, where
@ =Ay C A C--- A, = [n], define the m-interval chain C,,(A) as

n—m

Co(A) = | [Ai, Aigm].

i=0
Grész, Methuku and Tompkins [19] proved |Cp,, (A)| = (n — m + 2)2™~! for all m-interval chains Cy, (A).

For a family F C B, and 1 < m < n, define the m-interval Lubell function of F, denoted lu%m)(}“), as
m 1
™ (F) = HZ|fmcm(,4)|
A
where the sum is taken over all full chains A. Observe that (" (F) = lu,(F). For a poset P define
LY(P) = max{l™ (F) : F C B,, Fis P-frec}.

Due to the size of an m-interval chain, ln{™ (B,) = (n — m + 2)2™~'. With this in mind, we arrive at a

direct extension of Lemma 2.3

Proposition 2.7. Let P, ..., P; be posets. If 3_, LI™(P) < (n—m+2)2""L for some m with 1 < m < n,
then BR'(Py,...,P) < n.

In order to apply Proposition to attain a general upper bound on 1-uniform Boolean Ramsey numbers,

we will make use of the following result.
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Theorem 2.8 (Grész, Methuku and Tompkins [19, Lemma 12]). For m > 2, if P is a poset of height h(P)
and F is P-free, then for any m-interval chain Cp,(A),

| FNCrn(A)| <|P| =1+ (h(P)—1)(3m —5)2m2

We now provide a general upper bound on the 1-uniform Boolean Ramsey number for posets whose sizes are

large compared to their heights.

Theorem 2.9. Let Pi,..., P, be posets, S =3\, (|Pi| — 1), and H = ' (h(P}) — 1).
BR'(P, P) < Shat) (1 5 +1
1 P) < {5 gl :

Proof. If n = BRY(Py,...,P;) — 1, then >.'_, Lglm)(PZ-) > (n —m + 2)2m" ! whenever 1 < m < n by
Proposition 2.7 Therefore, by Theorem [2.8]

t
(n—m+2)2m"" <3 LY(P) < S+ (3m —5)2"*H

i=1

forall2<m<n. As S > H,lg (%) >0,s0set m=|2+1g(5)|. Hence,

ng(‘;’ +1)m SH+2""5 -2
_ (§H+1) {2 ()J S Sm g leils -
g(‘;’HH) <2+lg( >)2H+21g(2)52
(i) eden() < Gro) (e(3)e) o

A direct application of Theorem presents reasonable bounds on the Boolean Ramsey number of various

poset families

Corollary 2.10. For positive integers r,71,...,T¢,81,- .-, St,

BR;(B,) < (;TIH— 1) <lg (2; 1) + 1) O(rt),
) (<15 W_U) )

t—|—l
BRl(\/n,...,\/rs,/\rs+1,...,/\rt)_ t+1 <lg

BR' (>, ... ,alt) <

817 St

t
BRY (Orpyen s Ory) < (3t +1)1 (12 n+1>

i=1

Corollary brings to light an interesting phenomenon. If P, ..., P; are posets of bounded height (h(P;) <

ho for some constant hy not dependent on t) and s = %2221 | P;|, then

BRY(Py,..., P,) < O(tlogs).
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Additionally, it is not hard to observe that <, is not contained in the union of k consecutive levels of
the Boolean lattice whenever r > 2¥=! — 1. As such, e(<$,) > |lg(r + 1)| + 1, and we thus find that
BR;{(Or) = O(tlogr).

Unfortunately, Theorem does not allow us to prove that BR}(B,) = rt as implied by Conjecture
however, we know that the Ramsey number is at most quadratic in 7, which is much better than the naive
bound of (2" — 1)t.

3. 2-UNIFORM BOOLEAN RAMSEY NUMBERS

We now focus on 2-uniform partially-ordered Ramsey numbers. Due to recent interest in ordered Ramsey
numbers, we will also include results concerning chain Ramsey numbers. We also will state our results in

the k-uniform case when possible.
Proposition 3.1. Let G4, ..., G be k-uniform pographs.

lgCR*(Gy,...,Gy) <BR¥(G4,...,Gy) < CRF(Gy,...,Gy) — 1.

Proof. Let N = CRk(Gl, ...,G¢). Observe that the chain Cy is contained in the Boolean lattice By_1,
so any t-coloring of the k-chains in Bx_; contains a copy of G; in the color i for some i € [t] and hence
BR*(G4,...,Gy) < N —1.

Let ¢ be a t-coloring of the k-chains in Cy_1 that avoids copies of G; in color i for all ¢ € [t]. Let n = [lg N—1]
and consider a linear extension m : B, — Cs». Thus, we can t-color every k-chain A € B,, using the color
c(mw(A)), where w(A) is a k-chain in Con C Cy_;. Since ¢ avoids copies of G; in color i for all ¢ € [t], this

coloring also avoids these copies in B,,. |

Let Gi,...,G; be k-uniform pographs. If every linear extension of G; is isomorphic for all ¢ € [t], then
observe that CR” (Gh,...,Gy) = ORk(Gl, ..., G}); pographs with this property include V,., A, $,, and <.
When every G; is totally-ordered, we have another equivalence of partially-ordered Ramsey numbers.

Proposition 3.2. If Gy,...,G; are totally-ordered k-uniform pographs, then

BR*(G4,...,Gy) = CR¥(Gy,...,G) —1=O0R*G,...,Gy) — 1.

Proof. The inequality BRk(Gl, Gy < CR*(Gy, ..., G¢) — 1 follows from Proposition

Let N = CR* (G1,...,Gt) —1 and let ¢ be a t-coloring of the k-chains in Cy that does not contain a copy of
G, in color i for all 7 € [t]. Define amap p: By_1 — Cy by p(A) = |A|+1;if Ay C Ay C -+ Ay is an f-chain
in By_1, then (p(A1),...,p(As)) is an ¢-chain in Cy. For a k-chain 47 C Ay C -+ C Ay in the Boolean
lattice By—_1, let ¢/(A1, ..., Ax) = c(p(A1), p(As), ..., p(Ak). Consider a copy of G; in By_1. Since G; is
totally-ordered, the elements of G; form a chain in By _; and thus p maps the elements of G; onto a copy of

G; in Cy. Since ¢ avoids i-colored copies of G; in Cy, so does ¢’ avoid i-colored copies of G; in By_1. O
b

The above argument requires that the vertices of a totally-ordered graph occupy distinct levels in any
embedding of G into the Boolean lattice. If G is not totally-ordered, then there is a pair of vertices which
are incomparable; these two vertices may occupy the same level in an embedding of G into B,. It seems
reasonable to expect that if G contains large antichains, then the lower bound in Proposition should be

closer to the truth. We find this to be true for a few classes of pographs with large antichains.
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3.1. Matchings. A natural class of k-uniform pographs with large antichains are those were the k-chains
are completely independent. In the case of k-uniform matchings, we find the logarithmic bound on the

Boolean Ramsey number is essentially tight.

m

t t
lg (ml + ) (mi — 1)) <BRF(ME ... .M} ) < {g (1 +) (mi - 1))} +k—1.
=2 =1

Theorem 3.3. Let my > --- > m; and let Mﬁ“, ey Mkt be k-uniform matchings of size my, ..., ms.

Proof. Lower bound. Observe CRk(Mfﬁ“, .. .,M,’fbt) = Rk(Mfﬁ“, .. .,M,’fbt) as every copy of an unordered
matching can be considered a linear extension of a partially-ordered matching. Alon, Frankl, and Lovész [I]
demonstrated that if m; > --- > my, then RF(MF S ME ) =Ekmy + Zle(mi —1). Apply Proposition

s
to complete the lower bound.

Upper bound. Let N = {lg (1 + Z:.:l(mi — 1))1 and let ¢ be a t-coloring of the k-chains in By x_1. Let
X be the family of subsets of [N] within By;—1. For every set A € X, define the extension of A to be the
k-chain ext(A) = (A, AU{N +1},AU{N +2},...,AU{N +1,...,N + k —1}). For i € [t], define the set
T; to be the sets A € X where c(ext(A)) =i. Since | X| =2 > 1+ Zf:l(mi — 1), the pigeonhole principle
implies that |T;| > m; for some i. The collection of k-chains ext(A) for A € T; form an i-colored matching

of size at least m;. O

Matchings are usually much simpler than other graphs. Indeed, we limit our focus to 2-uniform pographs

for the remainder of this section.

3.2. Cups and Caps. We now focus on the Boolean Ramsey numbers of r-caps and r-cups. To begin, the
following proposition follows directly from the pigeonhole principle by considering all r;-cups with minimum

element & or all r;-caps with maximum element [N].

Proposition 3.4. For positive integers r1,...,7¢,
t
BR?(Vyy,...,Ve,) =BR?*(Apy, ..y Ar,) = ’VIg (2 +) (i 1)” .
i=1

While the Boolean Ramsey number was simple to compute when considering a collection of cups or a
collection of caps, the Ramsey numbers become more complicated when considering a collection of both
cups and caps. This next proposition states that knowing the 2-color partially-ordered Ramsey number for
cup verses cap is sufficient to determine the multicolor Ramsey number.

Proposition 3.5. Let R=1+> " (r; —1)and S =14 " (s; — 1).

CR?(Vyysev oy Vo s Asyy vy As,, ) = CR2(VR, Ag), and
BR?(Vyys ooy Vo Asyy ooy As, ) = BR2(VR, Ag).

Proof. We prove equality by demonstrating both inequalities.

(<) Consider an (n + m)-coloring ¢ of the edges of either a chain Cy or a Boolean lattice By. Let ¢’ be
a 2-coloring where ¢/(e) = 1 if ¢(e) < n and ¢/(e) = 2 if ¢(e) > n. If ¢ avoids i-colored copies of V,, and

(n + j)-colored copies of A, then ¢’ avoids 1-colored copies of V and 2-colored copies of As.
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(>) Let ¢ be a 2-coloring of the edges of either a chain Cy or a Boolean lattice By and suppose that ¢ does
not contain a copy of Vg in color 1 or a copy of Ag in color 2. We will construct an (n+m)-coloring ¢. Since
¢ does not contain a 1-colored copy of Vg, we have |U;(v)| < R; partition U; (v) into n parts Py U---U P,
such that |P;| <r; — 1 and let ¢/(vu) = ¢ if uw € P;. Since ¢ does not contain a 2-colored copy of Ag, we have
|Dy(v)| < S; partition Dy (v) into m parts Py U --- U P, such that |P;| < s; — 1 and let ¢/(vu) = n+ j if
u € P;. Every edge is colored exactly once by the process above and hence ¢’ avoids i-colored copies of V,,

and (n + j)-colored copies of As;. O

Choudum and Ponnusamy [4] determined CR?(V,, A,) exactly.

Theorem 3.6 (Choudum and Ponnusamy [4]). For integers r,s > 2,

V1+8(r—1)(s—1)—1
2

CR?(V,, As) = \‘ J +7r+s.

Observe that this implies CR?*(V,, As) < (1 + v/2)(r 4 5). Therefore, by applying Proposition we see
that

VI+8(R-1)(S-1)—1
2

CR2(Vyysev oy Vo Agyyee oy Nsy ) = { J +R+S<(1+V2)(R+S9),

where R=1+" (r;—1)and S =14 " (s; — 1).

In contrast to the linear bound of chain Ramsey numbers, the following theorem shows that the Boolean

Ramsey numbers for cups and caps is logarithmic.

Theorem 3.7. For integers r,s > 2,

Ig ({\/1—%8(7‘—1)(3—1)_1 _1_7,_,_5) SBRQ(\/T»,/\S) < [logg/Q(r—l—s—l)]

2

Proof. Lower Bound. The lower bound follows from Theorem and applying Proposition [3.1

Upper Bound. Let N = [log3/2(r + 55— 1)-‘ and suppose that c is a 2-coloring of the edges of By that avoids
copies of V, in color 1 and avoids copies of A, in color 2. Thus, for any v € By, |[Ui(v)] < r —1 and
|Dy(v)| < s — 1. In particular, this implies that |D;(v)| = |D(v)| — 1 — |Da(v)| > 2/*l — s.

Let W = By \ {[IV]} and let T be the set of elements v in W where |y (v) N W| =r — 1. As ¢ avoids copies
of V, in color 1, for any v € T, ¢(v, [N]) = 2. Hence, |T| < s — 1 since ¢ avoids copies of A in color 2.

Let b be the number of edges uv with ¢(uv) = 1 and both v and v are in W, then

b= [Di(v)] > > (2" —s) = <Jj>2i—s(2N—1):3N—2N(s+1)+s.

veW veW =0
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On the other hand,

b= [th(v)nW]|
veW
=S -0+ Y h)nw]
veT veEWN\T

<IT|(r =1+ @Y =1 |T)(r - 2)
=T+ 2" - 1)(r - 2)
<s—1+2Y —1)(r—2).

Therefore, 3V —2N(s+1) +s<b<s—1+(2Y —1)(r —2), so
3\ N
3 <r+s—1—(r-1D2""<r+s—1.

This, however, is a contradiction as N = [logg/Q (r+s— 1)—‘ O

By applying Proposition [3.5] observe that

1+8R-1)(S—-1)—-1
lg<\‘\/ i ( )( ) J+R+S> SBR’Q(\/T'17"'7\/T'n7/\317"'5/\s'm)S ’Vlog3/2(R+S_1)—"

2

where R=1+% 7" (r; —1)and S=1+>"",(s; — 1).

3.3. Diamonds. An r-diamond combines the behavior of an r-cup with an r-cap. Despite doubling the
number of edges in the pograph, we find similar logarithmic behavior in the Boolean Ramsey numbers.

However, our methods focus on the 2-color case and fail to extend to the generic t-color case.

Using Theorem Balko, Cibulka, Kral and Kynél [2] argued that 11 < CR3(<{3) < 13 and show that the
lower bound is tight with computer assistance. We apply their technique that yields an upper bound of 13

to attain an general upper bound for the chain Ramsey number of <,..

Theorem 3.8. Ifr,s > 2, then

V1I+8(r—1)(s—1)—1
2

CR?(r, Os) < 2- { +3(r4s)—1

VI8 (-D)- . :
Proof. Let N =2 L 1+8( 21)( Dy 3(r 4+ s) — 1 and suppose that ¢ is a 2-coloring of the edges of Cn

that avoids copies of ¢, in color 1 and avoids copies of {5 in color 2. Therefore, |U;(1)ND1(N)| <r—1 and
[U2(1) N Do (N)| < s—1. Hence, [Us (1) NDa(N)|+ [U2(1)ND1(N)| > (N—-2)—(r—1)—(s—1) =N —r—s.
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By the pigeonhole principle, there is some i € {1,2} for which

U N Dai()] = [
VIS -1) -1 1
= { 5 J+T+s—2—‘
_ \/1+8(r—21)(s—1)—1J+r+8

= CR?*(A,, Vs).

If this is true for ¢ = 1, then c¢ restricted to (1) N Do (N) must admit either a V, in color 2, in which case
¢ admits a {5 in color 2, or a A, in color 1, in which case ¢ admits a <}, in color 1. A similar contradiction

is found if the inequality holds for i = 2. O
Corollary 3.9. If 5,7 > 2, then OR*({s, Or) = CR* (05, Or) < (3 +V2)(r + 5) ~ 4.414(r + 5).

This upper bound is asymptotically correct, up to the leading constant.

Proposition 3.10. If s > r > 2, then OR2(<>8, Or) = CR2(<>5, Or) > 25+ 2.

Proof. Let N = 2s + 2 and consider X; = {1,...,s+ 1} and X5 = {s+2,...,N}. If an edge has both
endpoints in X; for some ¢, then color that edge with color 1. If an edge has one endpoint in X; and another
in X5, then color that edge with color 2. Observe that there is no <, in color 2, as there is no chain of length
2 in color 2. Further, there is no {4 in color 1, as such a subgraph would be entirely contained in X; or X5,
but these sets have size s + 1 and |V ({5)| = s + 2. O

Note that Proposition immediately implies that if s > > 2, then BR?({s, &) > lg(2s + 3).

To investigate and upper bound on the Boolean Ramsey numbers of diamonds, we first consider diamonds
and cups (Theorem [3.11)) before completing the argument for two diamonds (Theorem [3.12]).

Theorem 3.11. Let s,r > 2 be integers.

B0, R3[4

Proof. The second inequality holds by Theorem Let N = BR*(Aqyr, V,) and consider a 2-coloring of
the edges of By and suppose the 2-coloring does not contain an s-diamond in color 1 or an r-cup in color 2.
Therefore, there is an (s + r)-cap in color 1. Let Ag, A1,..., Asyr—1, B be the sets in this cap where A; C B
for all 4. If the empty set is in the cap, then let Ag = &. There are s+ r edges from the empty set to the sets
A; with ¢ € {1,...,s+r — 1}. Since the coloring avoids r-cups in color 2, there must be at least s sets A;
such that the edge (&, A;) has color 1. Thus, these A4;’s along with the empty set and B forms an s-diamond

of color 1; a contradiction. O

Theorem 3.12. Let s,r > 2 be integers.

BR?*($s, Or) < BR*(Os, Vegr—1) + [lg(2s + 2r)] < 2 [log3/2(2r +2s— 1)—‘ .

Proof. The second inequality holds by Theorem and logarithmic identities. Let N = BRQ(OS7 Vsir—1)
and M = [lg(2s + 2r)]. Counsider a 2-coloring c of the edges of Bx . Suppose for the sake of contradiction

that ¢ does not contain an s-diamond in color 1 and does not contain an r-diamond in color 2.
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For j € {1,2}, let I,; contain the sets Z such that [N] C Z C [N + M]. and ¢(Z,[N + M]) = j. Since
|[ILUI| = 2M —2 > 254 2r — 2, either |I;| > s+r—1or [Iz| > s+7r—1. We will assume that |I;| > s+r—1;
the other case follows by a symmetric argument. Let I C I} with [I| =s+7r — 1.

Since N = BR?*({s, Vsyr_1), and ¢ does not contain an s-diamond in color 1, there exists an (s +r — 1)-
cup of color 2 in D([N]). Let Ag,By,...,Bsir—1 be the sets of this cup such that Aqg C B; for each
jeA{l,...,s+r—1}. Notice that B; C Z for all j € {1,...,s+r — 1} and all Z € I. The edges between
By, ..., Bsyr—1 and the sets Z € I form a 2-colored copy of the complete bipartite graph Ky, 1 s4r—1-

For every j € {1,...,s +r — 1} there are at most s — 1 edges of color 1 from B; to the sets Z € I, since
¢ avoids s-diamonds in the color 1. For every Z € I, there are at most r — 1 edges of color 2 from the
sets By,...,Bs4r—1 to Z, since ¢ avoids r-diamonds in the color 2. However, this implies that the total
number of edges in this complete bipartite graph is at most (s +7—1)((s = 1)+ (r — 1)) < (s +7—1)% a

contradiction. O

Using Theorems and [3.12] we find BR?({2,Vs) < 5 and BR?({g, $2) < 8. With a more specialized
argument for the case 7 = s = 2, one can prove BR?*({2, ¢2) < BR?({9, V3) +2, but this is not tight. In the
next section, we discuss computational methods to compute Boolean Ramsey numbers, and we verify that
BR?(¢9,V3) = 4 and BR?({g, $2) = 5.

4. COMPUTATIONAL RESULTS

Ramsey numbers are difficult to compute in all but the simplest of cases. A naive algorithm for testing
Rf (G) > n takes O(t”k) steps, and advanced algorithm techniques do not improve on the asymptotic growth
of this method. However, using the same method to test BRF(G) > n can require O(t*+1)") steps. In fact,
simply storing a t-coloring of the k-chains in B,, requires (k+1)" gt bits of space. This makes finding exact

values of 2-color, 2-uniform Boolean Ramsey numbers very difficult once n > 5.

To test if BR2(H1,H2) > n, we use a SAT formulation to determine if there exists a 2-coloring ¢ of the
comparable pairs in B,, that avoids copies of H; in color 1 and avoids copies of Hy in color 2. For every
comparable pair A C B, we let x4, g be a Boolean variable; the variable z 4 g is true exactly when ¢(A4, B) = 1.
For every copy of H; in B,,, we create a constraint that requires at least one variable x4 g to be false among
the edges (A, B) in the copy of H;. Similarly, for every copy of Hy in B,, we create a constraint that
requires at least one variable z4 g to be true among the edges (A4, B) in the copy of Hy. There exists such

a 2-coloring if and only if these constraints can be simultaneously satisfied.

We used a similar SAT formulation to demonstrate that BR'(B,,, B,,) > n+m—1 (formulation is satisfiable)
and BR! (Bn, Bm) < n+m (formulation is unsatisfiable) when 3 > n >m > 1.

We used Sage [28] to construct our SAT formulations in SMT2 format. We then used the Microsoft Z3 [11]
SM'IH solver to test the formulations. The results are summarized in Table These computations were
completed using a standard laptop computer with each test taking at most a few hours. All Sage code and

SAT formulations are available onlinel

This method was limited by the exponential growth in the size of the formulations more than the time it

takes to solve them. We selected only a few examples to test with n = 5 due to the number of copies of the

2Satisﬁabﬂity Modulo Theory.
3See http://orion.math.iastate.edu/dstolee/data.htm for all code and data.


http://orion.math.iastate.edu/dstolee/data.htm
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(b) BR2(H, As).

(C) BRQ(HL HQ).

No | A3 | Aa | Ns Ao | A3 | A4 O2 | B My | M3 | My
Vo 3 3 4 4 Oa 4 4 5 Oo 5 6 Vo 3 3 4
Vs || 3 4 5 5 By || 4 4 5 B, 6 6 V3 3 4 4
Vy 4 5 5 O3 4 5 5 Vg4 4 4 4
Vs 4 5 Vs 4 4 4
Ve 4 4 4
(e) BR?(M;, Ms). (f) BR*(C:, Ms) (g) BR?(Cr, As) = BR?*(Cr, Vs)
My | M3 | My My | M3 | My No | A3 | Ay
M> 3 3 4 Cy 2 3 3 Cy 2 2 3
M3 3 4 Cs 3 4 4 Cs |l 3 3 4
My 4 Cy 4 5 Cy 4 4 5
Cs 5
(h) BR2(V,, 7)) = BR2(Ar, <) (i) BR2(Vy, Ws) = BR2(Ar, W)
g | o | g | Wy | W | Wy | Wy
Vo 4 4 4 5 Vo 4 4 4 4
V3 4 4 5 5 V3 4 4 4 4
V4 4 5 V4 4 5

15

TABLE 1. Computational results for small 2-uniform Boolean Ramsey numbers.

pographs H; and Hs that appeared within Bs. We could test BR?(By, {2) = BR?*(Bs, By) = 6 due to the
fact that By and <{»5 have only four elements, which greatly limited the number of copies appear within Bg,

but these tests were our largest computations.

A highly specialized algorithm may be able to extend these results to more examples when n = 6, but we

expect this will be very difficult.

5. OTHER POSET FAMILIES

While we have mainly focused on chain Ramsey numbers and Boolean Ramsey numbers, many other families

of posets can give rise to interesting Ramsey numbers.

5.1. Generic Poset Families. Let P = {P,, : n > 1} be a poset family with P, C P,41 for all n. For
a t-tuple (Gy,.. ., Gy) if there exists

an N such that every t-coloring of the k-chains in Py contains an i-colored copy of G; for some i. The

., Gy) of k-uniform pographs, we say that P is k-Ramsey for (Gq,..

partially-ordered Ramsey number R;“;(Gl, ..., G}) exists exactly when P is k-Ramsey for (Gy,...,Gy).

We say a family P is a universal poset family if P is k-Ramsey for every ¢-tuple of k-uniform pographs and
every k > 1. If the height of P, grows without bound, then P is a universal poset family as eventually
P, contains a chain of order CR*(G1,...,Gy) for any Gy, ..., G,.
poset families, such as Propositions Other results must be generalized slightly, such as the following

Some of our results hold for universal

generalization of Proposition [3.1

Proposition 5.1. Let P = {P, : n > 1} be a universal poset family. Define sp(n) to be the minimum N
such that |Py| > n. Define hp(n) to be the minimum N such that C,, C Py. Then,

sp(CR¥(G1,...,Gy)) < RE(G1,...,Gy) < hp(CRF(GY, ..., Gy)).
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Using the function hp(n), one can restate Proposition as R&(Gy,...,Gy) = hp(CR¥(Gy,...,Gy)) for
totally-ordered graphs G, ..., G;.

5.2. Rooted Bipartite Ramsey Numbers. A poset family does not need to be universal in order to be
interesting. Consider the family = {>1": n > 1} of n, n-butterfly posets. This family is not universal since
Cs g for any n. However, we can still consider Gi,...,G; to be pographs whose posets partition into
two antichains V(G;) = X; UY; where every x € X, is comparable to at least one element y € Y; with x < y.
In this case, the Ramsey number R,ZC(Gl, ..., Gy) is the minimum N such that every t-coloring of the edges
of the complete bipartite graph Ky y with vertex set V(K n n) = AU B contains an i-colored copy of the
bipartite graph G; where X; C A and Y; C B for some i.

If we remove the condition that X; C A and Y; C B, then this Ramsey problem is identical to finding
bipartite Ramsey numbers (see [3 [6] 15, 21, 22]). The equivalent of the Turdn problem in this context is
called the Zarenkiewicz problem (see [14] 15, 22]). The most widely studied version of these numbers are

those where G; =" for some n,m.

With the condition that X; C A and Y; C B, we can call R2,C(G1, ..., Gy) the rooted bipartite Ramsey
number. In this case, it may be true that R}-(<x2,a?) # Rx-(<2,7) when 7 # s. The final paragraph of
the proof of Thereom implicitly proves and uses the fact that RE-(As, V,) = R (Vs, Vy) = s + 7 — 1.

5.3. High-Dimensional Grids. Closely related to the Boolean lattice is the m-dimensional £-grid ([(]™, <),
whose elements are m-tuples (z1,...,z,) where every coordinate z; is in the set [{], and (z1,...,2,) =
(y1,-..,yn) if and only if x; < y; for all ¢ (in particular, the Boolean lattice B,, corresponds to [2]™). When
constructing a universal poset family P = {P, : n > 1} from these grids, we have two natural options for the
parameter n. First, we could have the dimension grow with n; let @, (¢) = [¢(]™ and Q(¢) = {Qn(£) : n > 1}.
Second, we could have the length grow with n; let H,(m) = [n]™ and H(m) = {H,(m) : n > 1}. Along

these lines, we provide analogues of theorems from Section [3| for each of these cases.
Theorem 5.2 (Analogue of Theorem [3.7). For s,r > 2,

og, Q\/Hs(r— Dis—1)—1

5 J +r+ s) < Rzg(g)(\/r, Ns) < {log(“l)p(r +s— 1)—‘ and

1/n
<\‘\/1+8(T21)(3 1) 1J —|—T+S> < R?—L(m (Vi As) < [2(7‘4—8—1)1/7{‘ —1.

Theorem 5.3 (Analogue of Theorem . For s,r > 2,
R%() (05, Vi) <RG0y (Astr, Vi) < [log(@+1)/2(2r +5— 1)-‘ and
R, (1) (©s: Vi) < B2y (A, Vi) < [z(zr ts— 1)1/”] 1
Theorem 5.4 (Analogue of Theorem . For s,r > 2,
Q(@ ) (Os, Or) < R2 ) (Ory Vistr—1) + [log,(2s + 2r)] < 2 [log(é+1)/2(2r + 25 — 1)—‘ and

R3m)(Os: Or) < Rigon) (Osr Vorr—1) + [ @5 +20)17| <3 [(2r 4+ 25 - )V

The proof of each of these theorems are identical to their analogues in the Boolean lattice. Notice that in

each case, the Ramsey number is within a constant factor of the lower bound given in Proposition [5.1} It
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would be of interest to explore other partially-ordered Ramsey numbers using Q(¢) or H(m) as the host

family.

6. FUTURE WORK

For 1-uniform Boolean Ramsey numbers, the main open question is Conjecture 2.6] It is important to point
out that Theorem employed only the bound Iu™(F) < maxc, |F N Cp|. It would be interesting to
explore the actual value of Lglm)(P) for specific posets P.

We are particularly interested in the properties of partially-ordered graphs whose Boolean Ramsey numbers

are within a constant factor of the lower bound given in Proposition [3:1} In particular, we ask the following.

Question 6.1. What properties must a graph G have so that the lower bound on the Boolean Ramsey number

of G given in Proposition|3.1] is tight up to a constant?

We suspect that the answer to this question will focus on the properties of the underlying poset of G and
have very little to do with the actual edges of G. In particular, we suspect that the answer relies heavily on

the number and/or size of the antichains in the underlying poset.

Previously, as far as we are aware, other authors have, for the most part, only been interested in the Lubell
function of a P-free family when approaching the Turdn problem in the Boolean lattice. To this end, many
Lubell functions have been ignored if they do not provide the desired bound in the Turdn problem. We think
that an exploration of the Lubell functions of P-free families is interesting in and of itself. In particular, we
are interested in attaining good upper bounds on L, (Bg). Beyond this, further exploration of the m-interval
Lubell function of P-free families may provide interesting insights into both the Ramsey and Turan problems

in the Boolean lattice.

Returning to 2-uniform Boolean Ramsey numbers, an exploration of BR7(B,,) would be of great interest. By
applying the bounds on R3(K,,), we immediately observe that Q(2"/2) < BR3(B,) < O(4%"). We believe the
upper bound to be far from the truth and would expect only an exponential bound, but any improvement

to either bound would be of interest.
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