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Abstract

All planar graphs are 4-colorable and 5-choosable, while some planar graphs are not 4-
choosable. Determining which properties guarantee that a planar graph can be colored using
lists of size four has received significant attention. In terms of constraining the structure of the
graph, for any ` ∈ {3, 4, 5, 6, 7}, a planar graph is 4-choosable if it is `-cycle-free. In terms of
constraining the list assignment, one refinement of k-choosability is choosability with separation.
A graph is (k, s)-choosable if the graph is colorable from lists of size k where adjacent vertices
have at most s common colors in their lists. Every planar graph is (4, 1)-choosable, but there
exist planar graphs that are not (4, 3)-choosable. It is an open question whether planar graphs
are always (4, 2)-choosable. A chorded `-cycle is an `-cycle with one additional edge. We
demonstrate for each ` ∈ {5, 6, 7} that a planar graph is (4, 2)-choosable if it does not contain
chorded `-cycles.

1 Introduction

A proper coloring is an assignment of colors to the vertices of a graph G such that adjacent vertices
are assigned distinct colors. A (k, s)-list assignment L is a function that assigns a list L(v) of k
colors to each vertex v so that |L(v)∩L(u)| ≤ s whenever uv ∈ E(G). A proper coloring φ of G such
that φ(v) ∈ L(v) for all v ∈ V (G) is called an L-coloring. We say that a graph G is (k, s)-choosable
if, for any (k, s)-list assignment L, there exists an L-coloring of G. We call this variation of graph
coloring choosability with separation. Note that when a graph is (k, k)-choosable, we simply say
it is k-choosable. Observe that if G is (k, t)-choosable, then G is (k, s)-choosable for all s ≤ t. A
notable result from Thomassen [11] states that every planar graph is 5-choosable, so it follows that
all planar graphs are (5, s)-choosable for all s ≤ 5.

Forbidding certain structures within a planar graph is a common restriction used in graph
coloring. Theorem 1.2 summarizes the current knowledge on (3, 1)-choosability of planar graphs.
Škrekovski [13] conjectured that all planar graphs are (3, 1)-choosable; this question is still open
and is presented below as Conjecture 1.1.
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Conjecture 1.1 (Škrekovski [13]). If G is a planar graph, then G is (3, 1)-choosable.

Theorem 1.2. A planar graph G is (3, 1)-choosable if G avoids any of the following structures:

- 3-cycles (Kratochv́ıl, Tuza, Voigt [9]).
- 4-cycles (Choi, Lidický, Stolee [4]).
- 5-cycles and 6-cycles (Choi, Lidický, Stolee [4]).

In this paper, we focus on 4-choosability with separation. Kratochv́ıl, Tuza, and Voigt [9] proved
that all planar graphs are (4, 1)-choosable, while Voigt [12] demonstrated that there exist planar
graphs that are not (4, 3)-choosable. It is not known if all planar graphs are (4, 2)-choosable.

Conjecture 1.3 (Kratochv́ıl, et al. [9]). If G is a planar graph, then G is (4, 2)-choosable.

Theorem 1.4 (Kratochv́ıl, et al. [9]). If G is a planar graph, then G is (4, 1)-choosable.

Theorem 1.4 was strengthened by Kierstead and Lidický [8], where it is shown that we can
allow an independent set of vertices to have lists of size 3 rather than 4.

Theorem 1.5 (Kierstead and Lidický [8]). Let G be a planar graph and I ⊆ V (G) be an independent
set. If L assigns lists of colors to V (G) such that |L(v)| ≥ 3 for every v ∈ I, and |L(v)| = 4 for
every v ∈ V (G) \ I, and |L(u) ∩ L(v)| ≤ 1 for all uv ∈ E(G), then G has an L-coloring.

In addition to the work summarized above, there are several results regarding 4-choosability.
A graph is k-degenerate if each of its subgraphs has a vertex of degree at most k. Euler’s formula
implies a planar graph with no 3-cycles is 3-degenerate and hence 4-choosable. This and other
similar results are listed below in Theorem 1.6. For the last result in Theorem 1.6, note that a
chorded `-cycle is an `-cycle with an additional edge connecting two of its non-consecutive vertices.

Theorem 1.6. A planar graph G is 4-choosable if G avoids any of the following structures:

- 3-cycles (folklore).
- 4-cycles (Lam, Xu, Liu, [10]).
- 5-cycles (Wang and Lih [14]).
- 6-cycles (Fijavz, Juvan, Mohar, and Škrekovski [7]).
- 7-cycles (Farzad [6]).
- Chorded 4-cycles and chorded 5-cycles (Borodin and Ivanova [3]).

Our main results in this paper are listed below in Theorem 1.7. Note that a doubly-chorded
`-cycle is a chorded `-cycle with an additional edge.

Theorem 1.7. A planar graph G is (4, 2)-choosable if G avoids any of the following structures:

- Chorded 5-cycles.
- Chorded 6-cycles.
- Chorded 7-cycles.
- Doubly-chorded 6-cycles and doubly-chorded 7-cycles.

We prove each case of Theorem 1.7 separately. In Section 4, we forbid chorded 5-cycles (see
Theorem 4.1). In Section 5, we forbid chorded 6-cycles (see Theorem 5.1); we use parts of this
proof to also prove the case when forbidding doubly-chorded 6-cycles and doubly-chorded 7-cycles
(see Corollary 5.2). In Section 6, we forbid chorded 7-cycles (see Theorem 6.2). There are many
features common to all of these proofs, which we detail in Sections 2 and 3.
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1.1 Preliminaries and Notation

Refer to [15] for standard graph theory terminology and notation. Let G be a graph with a vertex
set V (G) and an edge set E(G); let n(G) = |V (G)|. We use Kn, Cn, and Pn to denote the complete
graph, cycle graph, and path graph, respectively, each on n vertices. The open neighborhood of a
vertex, denoted N(v), is the set of vertices adjacent to v in G; the closed neighborhood, denoted
N [v], is the set N(v) ∪ {v}. The degree of a vertex v, denoted dG(v), is the number of vertices
adjacent to v in G; we write d(v) when the graph G is clear from the context. If the degree of a
vertex v is k, we call v a k-vertex ; if the degree of v is at least k, we call v a k+-vertex. The length
of a face f , denoted `(f), is the length of the face boundary walk. If the length of a face f is k, we
call f a k-face; if the length of f is at least k, we call f a k+-face.

2 Overview of Method

All of our main results use the discharging method. We refer the reader to the surveys by Borodin [2]
and Cranston and West [5] for an introduction to discharging, which is a method commonly used
to obtain results on planar graphs. For real numbers av, af , b, we define initial charge values
µ(v) = avd(v) − b for every vertex v and ν(f) = af `(f) − b for every face f . If av > 0, af > 0
and 2av + 2af = b > 0, then Euler’s formula implies that

∑
v µ(v) +

∑
f ν(f) = −2b, and the total

charge on the entire graph is negative. We then define discharging rules that describe a method
for moving charge value among vertices and faces while conserving the total charge value. We
demonstrate that if G is a “minimal counterexample” to our theorem, then every vertex and face
ends with nonnegative charge after the discharging process, which is a contradiction. Intuitively,
this process works well when forbidding a structure (such as a short chorded cycle) with low charge.

In Section 3, we concretely define reducible configurations. Loosely, a reducible configuration is
a structure C in a graph G with (4, 2)-list assignment L where any L-coloring of G−C extends to an
L-coloring of G. If we are looking for a minimal example of a graph that is not (4, 2)-choosable, then
none of these reducible configurations appear in the graph. We define a large list of configurations,
(C1)–(C21) (see Figure 2), and prove they are reducible using various generic constructions. The
configurations (C1)–(C10) are used when forbidding chorded 6- or 7-cycles, while the configurations
(C9)–(C21) are used when forbidding chorded 5-cycles. The use of different configurations is due
to differences in our discharging arguments.

In Section 4, we forbid chorded 5-cycles and every 3-face is adjacent to at most one other 3-
face. Moreover, 3-faces are not adjacent to 4-faces. Thus, our initial charge function in this case
guarantees that the only objects with negative initial charge are 4- and 5-vertices.

In Sections 5 and 6, we use a different discharging strategy. Our initial charge values guarantee
that the only objects of negative charge are 3-faces. Thus, our discharging rules are designed to
send charge from 5+-faces and 4+-vertices to 3-faces. However, as we forbid chorded 6-cycles or
chorded 7-cycles, there may be many 3-faces very close to each other.

If G is a plane graph and G∗ is its dual, then let F3 be the set of 3-faces of G and let G∗3 be
the induced subgraph of G∗ with vertex set F3. A cluster is a maximal set of 3-faces that are
connected in G∗, i.e., a connected component of G∗3. Note that two 3-faces sharing an edge are
adjacent in G∗, and two 3-faces sharing only a vertex are not adjacent in G∗. See Figure 1 for a list
of the clusters with maximum cycle length six and every internal vertex of degree at least four. In
these figures, the outer cycle is not necessarily a facial cycle, any area filled with gray is not a face,
and a pair of square vertices represent a single vertex. Additionally, bold edges describe separating
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These are all of the possible clusters with longest cycle at most six and minimum degree four. Bold edges

demonstrate separating 3-cycles. Gray regions designate cycles that are not faces. We group our clusters by the

length of the longest cycle in the cluster. Thus a configuration (Kni) has a maximum cycle length of n.

Figure 1: Clusters with maximum cycle length at most six.
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3-cycles, which are cycles in a plane graph whose exterior and interior regions both contain vertices
not on the cycle. These figures are based on the list of clusters used by Farzad [6] in the proof that
7-cycle-free planar graphs are 4-choosable.

For k ∈ {1, 2}, there is exactly one way to arrange k 3-faces in a cluster. A triangle is a cluster
containing exactly one 3-face; see (K3). A diamond is a cluster containing exactly two 3-faces; see
(K4). For k ≥ 3, there are multiple ways to arrange k 3-face in a cluster. A k-fan is a cluster of k
3-faces all incident to a common vertex of degree at least k + 1; see (K5a) and (K6b). A k-wheel
is a cluster of k 3-faces all incident to a common vertex of degree exactly k; see (K5b) and (K6e).
Note that the vertex incident to all faces of a 3-wheel has degree 3. A k-strip is a cluster of k
3-faces f1, . . . , fk where the boundaries of the 3-faces are disjoint except that fi and fi+1 share an
edge for i ∈ {1, . . . , k − 1} and fi and fi+2 share a vertex for i ∈ {1, . . . , k − 2}; see (K5a) and
(K6a).

If f1, . . . , fk are the 3-faces in a cluster, then we will prove that the total charge on f1, . . . , fk
after discharging is nonnegative. Thus, some of the 3-faces may have negative charge, but this is
balanced by other 3-faces in the cluster having positive charge. Hence, our proofs end with a list
of all possible cluster types and verifying that each has nonnegative total charge.

While there are 23 total clusters that avoid chorded 7-cycles, we do not have that many cases to
check. The clusters (K5c) and (K6g)–(K6r) have three bold edges, demonstrating a separating 3-
cycle. We avoid checking these cases by using a strengthened coloring statement (see Theorem 6.2)
that allows our minimal counterexample to not contain any separating 3-cycles.

3 Reducible Configurations

In this section, we describe structures that cannot appear in a minimal counterexample to Theo-
rem 1.7. Let G be a graph, f : V (G)→ N, and s be a nonnegative integer. A graph is f -choosable
if G is L-choosable for every list assignment L where |L(v)| ≥ f(v). An (f, s)-list-assignment is a
list assignment L on G such that |L(v)| ≥ f(v) for all v ∈ V (G), |L(v) ∩ L(u)| ≤ s for all edges
uv ∈ E(G), and L(u) ∩ L(v) = ∅ if uv ∈ E(G) and f(u) = f(v) = 1. A graph G is (f, s)-choosable
if G is L-colorable for every (f, s)-list-assignment L.

Definition 3.1. A configuration is a triple (C,X, ex) where C is a plane graph, X ⊆ V (C), and
ex : V (C) → {0, 1, 2,∞} is an external degree function. A graph G contains the configuration
(C,X, ex) if C appears as an induced subgraph C ′ of G, and for each vertex v ∈ V (C), there are
at most ex(v) edges in G from the copy of v to vertices not in C ′. For a triple (C,X, ex), define
the list-size function f : V (C)→ N as

f(v) =

{
4− ex(v) v ∈ X
1 v /∈ X

.

A configuration (C,X, ex) is reducible if C is (f, 2)-choosable.

Note that if a graph G with (4, 2)-list assignment L contains a copy of a reducible configuration
(C,X, ex) and G−X is L-choosable, then G is L-choosable.

First, we note that if (C,X, ex) is a reducible configuration, then any way to add an edge
between distinct vertices of X and lower their external degree by one results in another reducible
configuration.
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(C1) (C2) (C3) (C4)

(C5) (C6) (C7) (C8)

(C9) (C10) (C11) (C12)

(C13) (C14) (C15)

(C16) (C17) (C18)

(C19) (C20)
(C21)

In these configurations, edges with only one endpoint are external edges. Vertices in X are filled with white.

Figure 2: Reducible configurations.
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(C12) (C13) (C14) (C15) (C16)

Figure 3: Alon-Tarsi Orientations.

Lemma 3.2. Let (C,X, ex) be a reducible configuration, and suppose that x, y ∈ X are nonadjacent
vertices with ex(x), ex(y) ≥ 1. Let (C ′, X ′, ex′) be the configuration where C ′ = C + xy, X ′ = X,

and ex′(v) =

{
ex(v) v /∈ {x, y}
ex(v)− 1 v ∈ {x, y},

. Then the configuration (C ′, X ′, ex′) is reducible.

Proof. Let f be the list-size function for C and note that C is (f, 2)-choosable. Similarly let f ′

be the list-size function on the configuration (C ′, X ′, ex′), and let L′ be an (f ′, 2)-list assignment
on V (C ′). Note that f ′(x) = f(x) + 1 and f ′(y) = f(y) + 1. Let S = L′(x) ∩ L′(y). If |S| < 2,
then add at most one element from each of L′(x) and L′(y) to S until |S| = 2. Now let S = {a, b}
such that a ∈ L′(x) and b ∈ L′(y), and define a list assignment L on C by removing a from L′(x)
and removing b from L′(y). Observe that L is an (f, 2)-list assignment and hence there exists an
L-coloring of C. Since L(x)∩L(y) = ∅, this proper L-coloring of C is also an L′-coloring of C ′.

We will use Lemma 3.2 implicitly by assuming that C[X] appears as an induced subgraph in
our minimal counterexample G.

3.1 Reducibility Proofs

In this section, we prove that configurations (C1)–(C21) shown in Figure 2 are reducible.

3.1.1 Alon-Tarsi Theorem

We will use the celebrated Alon-Tarsi Theorem [1] to quickly prove that many of our configura-
tions are reducible. In fact, configurations that are demonstrated in this way are reducible for
4-choosability, not just (4, 2)-choosability.

A digraph D is an orientation of a graph G if G is the underlying undirected graph of D and
D has no 2-cycles; let d+D(v) and d−D(v) be the out- and in-degree of a vertex v in D. An Eulerian
subgraph of a digraph D is a subset S ⊆ E(D) such that, for every vertex v ∈ V (D), the number
of outgoing edges of v in S is equal to the number of incoming edges of v in S. Let EE(D) be
the number of Eulerian subgraphs of even size and EO(D) be the number of Eulerian subgraphs
of odd size.
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Theorem 3.3 (Alon-Tarsi Theorem [1]). Let G be a graph and f : V (G)→ N a function. Suppose
that there exists an orientation D of G such that d+D(v) ≤ f(v)− 1 for every vertex v ∈ V (G) and
EE(D) 6= EO(D). Then G is f -choosable.

We call an orientation an Alon-Tarsi orientation if it satisfies the hypotheses of Theorem 3.3.
For a configuration (C,X, ex) and the associated list-size function f , it suffices to demonstrate an
Alon-Tarsi orientation of C with respect to f . See Figure 3 for a list of Alon-Tarsi orientations of
several configurations.

Corollary 3.4. The following configurations have Alon-Tarsi orientations and hence are reducible:

(C1), (C2), (C4), (C5), (C10), (C11), (C12), (C13), (C14), (C15), (C16).

3.1.2 Direct Proofs

In the proofs below, we consider a configuration (C,X, ex) with list-size function f and assume
that an (f, 2)-list-assignment L is given for C. We will demonstrate that each C is L-colorable.
Refer to Figure 2 for drawings of the configurations.

First recall the following fact about list-coloring odd cycles.

Fact 3.5. If L is a 2-list assignment of an odd cycle, then there does not exist an L-coloring of the
cycle if and only if all of the lists are identical.

Lemma 3.6. (C3) is a reducible configuration.

Proof. Let v1, . . . , v4 be the vertices of a 4-cycle with chord v2v4 and let v2 and v4 have external
degree 1; the colors c(v1) and c(v3) are fixed. Each of v2 and v4 have at least one color in their
lists other than c(v1) and c(v3). Since |L(vi)| ≥ 3 for each i ∈ {2, 4}, either one of these vertices
has at least two colors available, or L(v2) ∩ L(v4) = {c(v1), c(v3)}. In either case, we can extend
the coloring.

For the configurations (C6), (C7), and (C8), label the vertices as in Figure 4: label the center
vertex v0 and the outer vertices v1, . . . , v5, starting with the vertex directly above v0, moving
clockwise.

v0

v2

v1
v5

v4 v3

v0

v2

v1
v5

v4 v3

v0

v2

v1
v5

v4 v3

(C6) (C7) (C8)

Figure 4: Vertex labels for configurations (C6), (C7), and (C8).

Lemma 3.7. (C6) is a reducible configuration.
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Proof. The colors c(v1) and c(v4) are determined. If c(v1) and c(v4) are both in L(v0), then select
c(v5) from L(v5)\ (L(v0) ∪ {c(v1), c(v4)}); otherwise, select c(v5) ∈ L(v5)\{c(v1), c(v4)} arbitrarily.
Define L′(v0) = L(v0) \ {c(v1), c(v4), c(v5)}, L′(v2) = L(v2) \ {c(v1)}, and L′(v3) = L(v3) \ {c(v4)}
and note that |L′(vi)| ≥ 2 for all i ∈ {0, 2, 3}. If |L′(v0)| = |L′(v2)| = 2, then L′(v0) 6= L′(v2), so
the 3-cycle v0v2v3 has an L′-coloring by Fact 3.5.

Lemma 3.8. (C7) is a reducible configuration.

Proof. If there exists a color a ∈ L(v1) ∩ L(v4), start by assigning c(v1) = c(v4) = a; then greedily
color the remaining vertices in the following order: v2, v3, v0, v5. Otherwise, L(v4) ∩ L(v1) = ∅.

Suppose that L(v1) ∩ L(v5) = ∅. Select a color c(v4) ∈ L(v4). Considering v4 as an external
vertex and ignoring the edge v1v5, the 4-cycle v0v1v2v3 forms a copy of (C4), which is reducible
by Corollary 3.4. Thus, there exists an L-coloring of v0, . . . , v4; this coloring extends to v5 since
L(v1) ∩ L(v5) = ∅. If L(v4) ∩ L(v5) = ∅, then there exists an L-coloring by a symmetric argument.

Otherwise, there exist colors a ∈ L(v1) \ L(v5) and b ∈ L(v4) \ L(v5); assign c(v1) = a and
c(v4) = b. Select c(v2) ∈ L(v2) \ {c(v1)}. Define L′(v0) = L(v0) \ {c(v1), c(v2), c(v4)} and L′(v3) =
L(v3) \ {c(v2), c(v4)}. Note that if |L′(v0)| = |L′(v3)| = 1, then L(v0) ∩ L(v3) = {c(v2), c(v4)} and
hence L′(v0) ∩ L′(v3) = ∅. Thus, the coloring extends by greedily coloring v3, v0, and v5.

Lemma 3.9. (C8) is a reducible configuration.

Proof. If L(v1) ∩ L(v2) = ∅, then greedily color v2 and v3; what remains is (C4) and the coloring
extends. A similar argument works if L(v3) ∩ L(v2) = ∅.

If L(v1) ∩ L(v3) = ∅, then |L(v1) ∩ L(v2)| = |L(v3) ∩ L(v2)| = 1. Select c(v1) ∈ L(v1) \ L(v2),
c(v3) ∈ L(v3) \L(v2). Define L′(v0) = L(v0) \ {c(v1), c(v3)}, L′(v4) = L(v4) \ {c(v3)}, and L′(v5) =
L(v5) \ {c(v2)}. Observe that we can L′-color the 3-cycle v0v4v5 by Fact 3.5 and then select
c(v2) ∈ L(v2) \ {c(v0)}.

If there exists a color a ∈ L(v1) ∩ L(v3), start by assigning c(v1) = c(v3) = a and then assign
c(v2) ∈ L(v2)\{a}. Define L′(v0) = L(v0)\{a, c(v2)}, L′(v4) = L(v4)\{a}, and L′(v5) = L(v5)\{a}.
Observe that the 3-cycle v0v4v5 has an L′-coloring by Fact 3.5.

Lemma 3.10. (C9) is a reducible configuration.

Proof. Consider the vertex v of arbitrary external degree and let c(v) be the color assigned to v.
Let u1 and u2 be the two neighbors of v in the configuration. If we remove c(v) from the lists on
u1 and u2, observe that at least two colors remain in every list for every vertex of the 5-cycle. If
there is no L-coloring of the configuration, then Fact 3.5 asserts that all lists have size two and
contain the same colors; however, this implies that L(u1) = L(u2) and |L(u1) ∩ L(u2)| = 3, a
contradiction.

3.1.3 Template Configurations

The configurations (C17)–(C21) are special cases of general constructions called template construc-
tions.

Let (C,X, ex) be a configuration with vertices u, v ∈ X. A uv-path P is called a special uv-path
if all internal vertices of P have degree two in C and external degree two. A uv-path P is called
an extra-special uv-path if all internal vertices of P have external degree two and degree two in C,
except for a consecutive pair xy where ex(x) = ex(y) = 1, d(x) = d(y) = 3, and there is a vertex
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z /∈ X such that z is a common neighbor to x and y, and z is not adjacent to any other vertices
in C. Using these special and extra-special paths, we can describe several configurations by the
following templates (see Figure 5), consisting of

• (B1) a triangle uvw, where ex(u) = ex(w) = 2, ex(v) = 0, an extra-special uv-path P1, and a
special vw-path P2, and

• (B2) a triangle vwr, where ex(r) =∞, ex(w) = 1, ex(v) = 0, a vertex u adjacent to v where
ex(u) = 2, an extra-special uv-path P1, and a special vw-path P2.

u

P1

x

y
z

v

P2

w yx

P1

u

z

v

r
w

P2

(B1) (B2)

Dotted lines indicate special paths or extra-special paths. Vertices in X are filled with white.

Figure 5: Templates for reducible configurations.

We make some basic observations about special and extra-special paths that will be used to
prove that these templates correspond to reducible configurations.

Let P be a special uv-path or an extra-special uv-path. For every color a ∈ L(u), let guP (a) be
the set containing each color b ∈ L(v) such that assigning c(u) = a and c(v) = b does not extend
to an L-coloring of P . Since we can greedily color P starting at u until reaching v, there is at most
one color in guP (a). Further, guP (a) 6= ∅ if and only if this greedy coloring process has exactly one
choice for each vertex in P . Thus, if guP (a) = {b} then also gvP (b) = {a}.

Since L is an (f, 2)-list assignment, adjacent vertices have at most two colors in common. Thus,
there are at most two colors a1, a2 ∈ L(u) such that guP (ai) 6= ∅. Moreover, observe that if there
are two distinct colors a1, a2 ∈ L(u) such that guP (ai) 6= ∅, then both a1 and a2 are in every list
along P and hence {a1, a2} ⊆ L(v).

If P is an extra-special uv-path with 3-cycle xyz where xy is in the path P , then after a color
is assigned to z (as ex(z) =∞) either one of x or y has three colors available or |L(x) ∩ L(y)| ≤ 1.
Therefore, if P is an extra-special uv-path, then there is at most one color a ∈ L(u) such that
guP (a) 6= ∅.

Lemma 3.11. All configurations matching the template (B1) are reducible.

Proof. Let (C,X, ex) be a configuration matching the template (B1) and let L be an (f, 2)-list
assignment.

Let L(u) = {a1, a2}. Since P1 is an extra-special path, there is at least one i ∈ {1, 2} such that
guP1

(ai) = ∅. Assign c(u) = ai, select c(w) ∈ L(w)\{ai} and c(v) ∈ L(v)\
(
{c(u), c(w)} ∪ gwP1

(c(w))
)
;

the coloring extends to P1 and P2.
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Corollary 3.12. The configurations (C17), (C18), and (C19) match the template (B1), and hence
they are reducible.

Lemma 3.13. All configurations matching the template (B2) are reducible.

Proof. Let (C,X, ex) be a configuration matching the template (B2) and let L be an (f, 2)-list
assignment. Let c(r) be the unique color in the list L(r). Let L(u) = {a1, a2}. Since P1 is an
extra-special path, there is at least one i ∈ {1, 2} such that guP1

(ai) = ∅. Assign c(u) = ai.

If c(r) /∈ L(v), then select c(w) ∈ L(w), and L(v) ∈ L(v) \
(
{c(u), c(w)} ∪ gwP2

(c(w))
)
; the

coloring extends to P1 and P2.
If c(r) ∈ L(v), then select c(w) ∈ L(w) \ L(v); observe c(w) 6= c(r). There exists a color

c(v) ∈ L(v) \
(
{c(r), c(u)} ∪ gwP2

(c(w))
)
; the coloring extends to P1 and P2.

Corollary 3.14. Using Lemma 3.2, the configurations (C20) and (C21) match the template (B2),
and hence they are reducible.

4 No Chorded 5-Cycle

In this section we show the case of forbidding chorded 5-cycles from Theorem 1.7.

Theorem 4.1. If G is a plane graph not containing a chorded 5-cycle, then G is (4, 2)-choosable.

Proof. Let G be a counterexample minimizing n(G) among all plane graphs avoiding chorded 5-
cycles with a (4, 2)-list assignment L such that G is not L-choosable. Observe that n(G) ≥ 4; in
fact, δ(G) ≥ 4. Since G is a minimal counterexample, G does not contain any of the reducible
configurations (C9)–(C21). If (C,X, ex) is a reducible configuration, then by Lemma 3.2 C does
not appear as a subgraph of G where dG(x) ≤ dC(x) + ex(x) for all x ∈ V (C). Further, the
configurations (C13)–(C21) are large enough that we must consider configurations that are formed
by identifying certain pairs of vertices in these configurations. In Appendix A, we concretely check
all vertex pairs that avoid creating a chorded 5-cycle and find that all resulting configurations are
reducible.

For each v ∈ V (G) and f ∈ F (G) define initial charges µ(v) = d(v) − 6 and ν(f) = 2`(f) − 6.
By Euler’s Formula, the sum of initial charges is −12. After charges are initially assigned, the only
elements with negative charge are 4-vertices and 5-vertices. Since chorded 5-cycles are forbidden,
there is no 3-fan in G and every 4-face is adjacent to only 4+-faces. The possible arrangements of
3-, 4+-, or 5+-faces incident to 4- and 5-vertices are shown in Figure 6.

Sequentially apply the following discharging rules. Note that, for a vertex v and a face f , we
define µi(v) and νi(f) to be the charge on v and f , respectively, after applying rule (Ri).

(R1) Let v be a 4-vertex and f be a 4+-face incident to v. If f is adjacent to a 3-face that is also
incident to v, then f sends charge 1 to v; otherwise, f sends charge 1

2 to v.

(R2) Let v be a 5-vertex. If f is a 4+-face incident to v, then f sends charge 1
2 to v.

A face f is a needy face if ν2(f) < 0; otherwise, f is non-needy.

(R3) If v is a 5-vertex incident to a needy 5-face f , then v sends charge 1
2 to f .

11



v

(a) 4+ 4+ 4+ 4+ (b) 3 5+ 4+ 5+ (c) 3 3 5+ 5+ (d) 3 5+ 3 5+

(e) 4+ 4+ 4+ 4+ 4+ (f) 3 5+ 4+ 4+ 5+ (g) 3 5+ 3 5+ 5+ (h) 3 3 5+ 4+ 5+ (i) 3 3 5+ 3 5+

v v v

v v v v v

Figure 6: Possible cyclic arrangements of 3-, 4+-, and 5+-faces incident to 4- and 5-vertices

A vertex v is a needy vertex if µ3(v) < 0; otherwise, v is non-needy.

(R4) If f is a non-needy 5+-face incident to a needy 5-vertex v, then f sends charge 1
2 to v.

We show that µ4(v) ≥ 0 for each vertex v and ν4(f) ≥ 0 for each face f . Since the total charge
was preserved during the discharging rules, this contradicts the negative charge sum from the initial
charge values. We begin by considering the charge distribution after applying (R1) and (R2).

Let v be a vertex. If v is a 4-vertex, then µ(v) = −2 and v receives total charge at least 2 from
its neighboring faces by (R1). Furthermore, v is not affected by any rules after (R1), so µ4(v) ≥ 0.
If v is a 6+-vertex, then µ(v) ≥ 0 and v is not affected by any other rules, so µ4(v) ≥ 0. If v is a
5-vertex, then µ(v) = −1 and v receives total charge at least 1 from its neighboring faces by (R2).
Therefore, for any vertex v, µ2(v) ≥ 0.

Let f be a face. If f is a 3-face, then ν(f) = 0 and f is not affected by any rule, so ν4(f) = 0. If
f is a 4-face, then ν(f) = 2. In (R1) and (R2), the only faces that send charge 1 to a single vertex
are adjacent to a 3-face. A 4-face adjacent to a 3-face is a chorded 5-cycle, which is forbidden by
assumption, so f sends charge at most 1

2 to each vertex. Since 4-faces are not affected by rules
(R3)–(R4), ν4(f) ≥ 0. If f is a 6+-face, then f has at least as much initial charge as it has incident
vertices. If v is a 4-vertex incident to f , then f sends charge at most 1 to v by (R1) and does not
send any charge to v by rules (R2)–(R4). If v is a 5-vertex incident to f , then f sends charge 1

2 to
v by (R1), and possibly another charge 1

2 by (R4), and does not send charge to v by (R1) or (R3).
Thus f sends charge at most 1 to each incident vertex, and ν4(f) ≥ 0.

If f is a 5-face, then ν(f) = 4 and f sends charge at most 1 to each incident vertex by (R1)
and (R2). Observe that if ν2(f) = −1, then f is incident to five 4-vertices and f is adjacent to at
least one 3-face; this forms (C9), a contradiction. Therefore, we have the following claim about the
structure of a needy 5-vertex.

Claim 4.2. If f is a needy 5-face, then ν2(f) = −1
2 and f is adjacent to exactly one 5-vertex.

We now consider the charge distribution after applying (R3). If f is a needy 5-face, then
ν2(f) = −1

2 and f is adjacent to exactly one 5-vertex, so ν3(f) = 0. No faces lose charge in (R3),
therefore ν3(f) ≥ 0 for any face f .

12



Claim 4.3. If v is a needy 5-vertex, then v is incident to three 3-faces, two 4+-faces, and exactly
one needy 5-face; hence µ3(v) = −1

2 .

Proof. Suppose that v is a vertex such that µ3(v) < 0, and consider the cyclic arrangement of 3-
and 4+-faces about v.

Case 1: v is incident to at least four 4+-faces (Figures 6(e) and 6(f)). Since µ2(v) ≥ 1 and
µ3(v) < 0, v is incident to at least three needy 5-faces. Hence two of the needy 5-faces are
adjacent, forming (C13), a contradiction.

Case 2: v is incident to two non-adjacent 3-faces and three 4+-faces (Figure 6(g)). Since µ2(v) = 1
2

and µ3(v) < 0, v is incident to two needy 5-faces, f1 and f2. If these two faces are adjacent,
then they form (C13), a contradiction. Otherwise, they share a 3-face t as a neighbor and all
vertices incident to f1, f2, and t other than v are 4-vertices, so the vertices incident to f1 and t
form (C10), a contradiction.

Case 3: v is incident to two adjacent 3-faces and three 4+-faces (Figure 6(h)). Since µ2(v) = 1
2

and µ3(v) < 0, v is incident to two needy 5-faces, f1 and f2. If f1 and f2 are adjacent then they
form (C13), a contradiction. Thus, f1 and f2 are not adjacent, but they are each adjacent to
a 3-face incident to v. Since fi is needy for each i ∈ {1, 2}, fi sent charge 1 to every 4-vertex
incident to fi. By (R1), every 4-vertex incident to fi is incident to a 3-face adjacent to fi.
Therefore, f1 is adjacent to a 3-face that does not share any vertices with the the two 3-faces
incident to v, forming one of (C20) or (C21), a contradiction.

Case 4: v is incident to three 3-faces and two 4+-faces (Figure 6(i)). If v is incident to two needy
5-faces f1 and f2, then the 3-face t adjacent to both f1 and f2 is incident to two 4-vertices, and
the vertices incident to f1 and t form (C10), a contradiction. Therefore, v is incident to exactly
one needy 5-face, as claimed.

By (R4), every needy 5-vertex receives charge 1
2 from its unique incident non-needy 5+-face, so

µ4(v) ≥ 0 for every vertex v. Each needy 5-face has nonnegative charge after (R3), so if ν4(f) < 0
for some 5-face f , then f sends charge by (R4), and thus is non-needy.

ff1

t1 t2

t3

v1

v2
v3

v4

v5

(a) A 5-face f with ν4(f) < 0.

f

vi
vi+1

u

t

gi+1

a

gi

(b) Claim 4.5, Case 1.

f

vi
vi+1

t

u w

b

gi+1

gi

(c) Claim 4.5, Case 2.

Figure 7: Special cases for a 5-face f with ν4(f) < 0.
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Consider the Figure 7(a), where f is a 5-face with ν4(f) < 0, f is incident to vertices v1, . . . , v5,
v1 is a needy 5-vertex, and f1 is the needy 5-face incident to v1. Let t1 and t2 be the adjacent
pair of 3-faces incident to v1 with t1 adjacent to f1 and t2 adjacent to f ; let t3 be the other 3-face
incident to v1. We make two basic claims about this arrangement.

Claim 4.4. The vertex v2 adjacent to v1 and incident to t3 is a 5+-vertex.

Proof. If v2 is a 4-vertex, then the vertices incident to f1 and t3 form (C10), a contradiction.

Claim 4.5. If vi and vi+1 are consecutive vertices on the border of f , then at most one of vi and
vi+1 is needy.

Proof. Suppose that two consecutive vertices vi and vi+1 are needy 5-vertices. Let gi and gi+1 be
the needy 5-faces incident to vi and vi+1, respectively. Since both vi and vi+1 have three incident
3-faces, f is adjacent to a 3-face t across the edge vivi+1. Let u be the third vertex incident to t
and consider two cases.

Case 1: t is not in a diamond (Figure 7(b)). Since gi is needy, the vertex a adjacent to u and
incident to gi (with a 6= vi) is a 4-vertex and is incident to a 3-face ti such that ti is adjacent to
gi. The vertices incident to gi, gi+1, t, and ti form one of (C15) or (C19), a contradiction.

Case 2: t is in a diamond (Figure 7(c)). Let w be the fourth vertex in the diamond and assume,
without loss of generality, that vi is adjacent to w. Let b be the vertex incident to gi+1 that is
not adjacent to u or vi+1 along the boundary of gi+1; since gi+1 is needy, there is a 3-face ti+1

incident to b and adjacent to gi+1. The vertices vi and w and those incident to gi+1 and ti+1

form one of (C17) or (C18), a contradiction.

By Claim 4.5, f is incident to at most two needy vertices, and by Claim 4.4, v2 is non-needy. If
f is incident to exactly one needy 5-vertex, then v3, v4, and v5 are 4-vertices since µ2(f) = 0, but
then the vertices incident to f and f1 form (C14), a contradiction.

Therefore, f is incident to two needy vertices, and since v2 is a 5+-vertex, f is incident to exactly
two 4-vertices. Each of these receives charge 1, so ν4(f) = −1

2 . By Claim 4.5, the needy vertices
incident to f consist of v1 and exactly one of v3 or v4. The needy 5-vertex vi other than v1 is also
incident to three 3-faces t4, t5, and t6, where t4 and t5 form a diamond with t4 adjacent to f . By
Claim 4.4, the vertex adjacent to vi and incident to both f and t6 is a non-needy 5+-vertex. The
only non-needy 5+-vertex incident to f is v2, and hence v3 is a needy 5-vertex and t4 is incident to
v4. If v2 is a 6+-vertex, then ν4(f) ≥ 0. Therefore, there is a unique arrangement of needy vertices,
4-vertices, and a 5-vertex about a 5-face f with ν4(f) < 0 (Figure 8). For i ∈ {1, 3}, let fi be the
needy 5-face incident to the needy 5-vertex vi.

The vertices incident to f , f1, f3, t3, and t6 form (C16), so this arrangement does not appear
within G; hence ν4(f) ≥ 0 for all 5-faces f . Therefore, every vertex and face has nonnegative charge
after (R4), contradicting the negative initial charge sum. Thus, a minimal counterexample does
not exist and every plane graph with no chorded 5-cycle is (4, 2)-choosable.
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t1
t2 t4

t5

t3 t6
f3f1

f

v2

v1 v3

v4v5

Figure 8: A non-needy 5-vertex v2 incident to a non-needy 5-face f with ν4(f) < 0.

5 No Chorded 6-Cycle

In this section we show the case of forbidding chorded 6-cycles from Theorem 1.7. The case of
forbidding doubly-chorded 6- and 7-cycles follows from a very similar argument. We give the full
proof for no chorded 6-cycles and describe the differences for the proof when we forbid doubly-
chorded 6- and 7-cycles.

Theorem 5.1. If G is a plane graph not containing a chorded 6-cycle, then G is (4, 2)-choosable.

Proof. Let G be a counterexample minimizing n(G) among all plane graphs avoiding chorded 6-
cycles with a (4, 2)-list assignment L such that G is not L-choosable. Observe that n(G) ≥ 5; in
fact, δ(G) ≥ 4. Since G is a minimal counterexample, G does not contain any of the reducible
configurations. Specifically, we use the fact that G avoids (C3) and (C4) (see Figure 2).

For each v ∈ V (G) and f ∈ F (G) define initial charge µ(v) = d(v) − 4 and ν(f) = `(f) − 4.
By Euler’s Formula, the initial charge sum is −8. Since δ(G) ≥ 4, the only elements of negative
charge are 3-faces. Since a chorded 6-cycle is forbidden and δ(G) ≥ 4, the clusters (see Figure 1)
are triangles (K3), diamonds (K4), 3-fans (K5a), 4-wheels (K5b), and 4-fans with end vertices
identified (K5c). Specifically note that the 4-fan (K6b) contains a chorded 6-cycle, so at most three
3-faces in a cluster share a common vertex, unless they form a 4-wheel (K5b) and the common
vertex is the 4-vertex in the center of the wheel.

Apply the following discharging rules, as shown in Figure 9.

(R1) If f is a 3-face and e is an incident edge, then let g be the face adjacent to f across e.

(R1a) If g is a 5+-face, then f pulls charge 1
3 from g “through” the edge e.

(R1b) If g is a 4-face, then let e1, e2, and e3 be the other edges incident to g. For each
i ∈ {1, 2, 3}, let hi be the face adjacent to g across ei. For each i ∈ {1, 2, 3}, the face f
pulls charge 1

9 from the face hi “through” the edges e and ei.

(R2) Let v be a 5+-vertex, and let f be an incident 3-face.

(R2a) If v is a 5-vertex, then v sends charge 1
3 to f .

(R2b) If v is a 6+-vertex, then v sends charge 4
9 to f .

(R3) If X is a cluster, then every 3-face in X is assigned the average charge of all 3-faces in X.
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Figure 9: Discharging rules in the proof of Theorem 5.1.

Notice that the rules preserve the sum of the charges. Let µi(v) and νi(f) denote the charge
on a vertex v or a face f after rule (Ri). We claim that µ3(v) ≥ 0 for every vertex v and ν3(f) ≥ 0
for every face f ; since the total charge sum is preserved by the discharging rules, this contradicts
the negative charge sum from the initial charge values.

Let v be a vertex. If v is a 4-vertex, then v is not involved in any rule, so the resulting charge
is 0. If v is a 6+-vertex, then by (R2b) v loses charge 4

9 to each incident 3-face. Since G avoids
chorded 6-cycles, v is incident to at most b34d(v)c 3-faces. Thus µ3(v) satisfies

µ3(v) ≥ d(v)− 4− 4

9

⌊
3

4
d(v)

⌋
≥ d(v)− 4− 4

9
· 3

4
d(v) =

2

3
d(v)− 4 ≥ 0.

If v is a 5-vertex, then by (R2a) v loses charge 1
3 to each incident 3-face. Since G avoids chorded

6-cycles, v is incident to at most three 3-faces, so

µ3(v) ≥ d(v)− 4− 1

3
· 3 = d(v)− 5 = 0.

Therefore, µ3(v) ≥ 0 for every vertex v.
Let f be a face. Since 4-faces are not adjacent to 4-faces, (R1b) does not affect the charge value

on 4-faces. Thus, ν3(f) = 0 for every 4-face f .
If f is a 6+-face, then f loses charge at most 1

3 through each edge by (R1a) or (R1b), so

ν3(f) ≥ `(f)− 4− 1

3
`(f) =

2

3
`(f)− 4 ≥ 0.

Therefore, ν3(f) ≥ 0 for every 6+-face f .
Let f be a 5-face. Since G contains no chorded 6-cycles, f is not adjacent to a 3-face. Therefore,

f loses no charge by (R1a), but could lose charge using (R1b), so

ν3(f) ≥ `(f)− 4− 1

9
`(f) =

8

9
`(f)− 4 ≥ 0.

Therefore, ν3(f) ≥ 0 if f is a 5-face. All objects that start with nonnegative charge have nonnegative
charge after the discharging process. It remains to show that each cluster of 3-faces receives enough
charge to result in a nonnegative charge sum.
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Case 1: (K3) Let f be an isolated 3-face. The three adjacent faces g1, g2, and g3 are all 4+-faces.
By (R1a) or (R1b), f receives charge 1

3 through each incident edge, so ν3(f) = −1 + 3 · 13 = 0.

Case 2: (K4) Let f1 and f2 be 3-faces in a diamond cluster (K4). Then f1 is adjacent to two
4+-faces g1 and g2, and f2 is adjacent to two 4+-faces h1 and h2. By (R1a) or (R1b), the
cluster receives charge 1

3 through each of the four edges on the boundary of the diamond. Since
ν(f1) + ν(f2) = −2, the charge value on the diamond after rule (R1) is −2

3 . Since G contains no
(C3), there is a 5+-vertex v incident to both f1 and f2. If v is a 5-vertex, then by (R2a), f1 and
f2 each receive charge 1

3 , and the resulting charge on the diamond is zero. If v is a 6+-vertex,
then by (R2b), f1 and f2 each receive charge 4

9 , and the resulting charge on the diamond is
positive.

Case 3: (K5a) Let f1, f2, and f3 be 3-faces in a 3-fan cluster (K5a), where f2 is adjacent to both
f1 and f3. The initial charge on this cluster is −3. There are five edges on the boundary of this
cluster, so by (R1) the cluster receives charge 5

3 , resulting in charge −4
3 after (R1). Note that

the face f2 is adjacent to both f1 and f3. Since G contains no (C3), there exists a 5+-vertex v
incident to both f1 and f2, and there exists a 5+-vertex u incident to both f2 and f3. If v 6= u,
then by (R2) v sends charge at least 1

3 to each of f1 and f2 and u sends charge at least 1
3 to each

of f2 and f3, resulting in a nonnegative charge on the 3-fan. If v = u and v is a 6+-vertex, then
by (R2b) v sends charge 4

9 to each face f1, f2, and f3, resulting in a nonnegative charge on the
3-fan. Otherwise, suppose that v = u and v is a 5-vertex. Since G contains no (C4), there exists
another 5+-vertex w incident to at least one of f1 and f2. By (R2a) v sends charge 1

3 to each of
f1, f2, and f3, and by (R2) w sends charge at least 1

3 to at least one of f1 and f2, resulting in a
nonnegative charge on the 3-fan.

Case 4: (K5b) Let f1, f2, f3, and f4 be 3-faces in a 4-wheel (K5b). The initial charge on this
cluster is −4. There are four edges on the boundary of this cluster, so by (R1) the cluster receives
charge 4

3 , resulting in charge −8
3 after (R1). Let v be the 4-vertex incident to all four 3-faces.

Let u1, u2, u3, and u4 be the vertices adjacent to v, ordered cyclically such that vuiui+1 is the
boundary of the 3-face fi for i ∈ {1, 2, 3} and vu4u1 is the boundary of f4. Since G contains
no (C3) and d(v) = 4, each ui is a 5+-vertex. By (R2), each ui sends charge at least 2

3 to the
cluster, resulting in a nonnegative total charge.

Case 5: (K5c) Let f1, f2, f3, and f4 be 3-faces in a 4-strip with identified vertices as in (K5c).
The initial charge on this cluster is −4. Let v, u1, u2, u3, and u4 be the vertices in the 4-strip,
where v is incident to only f1 and f4, u1 is incident to only f1 and f2, u2 is incident to f2, f3,
and f4, u3 is incident to f1, f2, and f3, and u4 is incident to only f3 and f4. There are six edges
on the boundary of this cluster, so by (R1) the cluster receives charge 6

3 , resulting in charge
−6

3 = −2 after (R1).

Since f2 and f3 form a diamond, and G contains no (C3), one of u2 and u3 is a 5+-vertex.
Without loss of generality, assume u3 is a 5+-vertex. Since f3 and f4 form a diamond, and
G contains no (C3), one of u2 and u4 is a 5+-vertex. If u2 is a 5+-vertex, then by (R2), the
cluster receives charge at least 3

3 + 3
3 from u2 and u3, which results in nonnegative total charge.

Otherwise, u2 is a 4-vertex and u4 is 5+-vertex. If u3 is a 6+-vertex, then by (R2), the cluster
receives charge at least 4

3 + 2
3 from u3 and u4. If u3 is a 5-vertex, then since f1 and f2 form a

diamond and G contains no (C4), one of v and u1 is a 5+-vertex. By (R2), the cluster receives
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charge at least 3
3 + 2

3 + 2
3 from u3 and u4 and one of v and u1. In either case, the final charge is

nonnegative.

We have verified that the total charge after discharging is nonnegative, contradicting the neg-
ative initial charge sum. Thus, a minimal counterexample does not exist and every planar graph
with no chorded 6-cycle is (4, 2)-choosable.

Corollary 5.2. If G is a plane graph not containing a doubly-chorded 6-cycle or a doubly-chorded
7-cycle, then G is (4, 2)-choosable.

Proof. Let G be a minimal counterexample by minimizing n(G). Observe that n(G) ≥ 4 and
δ(G) ≥ 4. Since G contains no doubly-chorded 6-cycle, the clusters are 3-faces (K3), diamonds
(K4), 3-fans (K5a), 4-wheels (K5b), and 4-fans with end vertices identified (K5c).

Use the same discharging argument as in Theorem 5.1, with the following changes:

• If f is a 4-face, then f can be adjacent to a 4-face g. However, since G contains no doubly-
chorded 7-cycle, g cannot be adjacent to a 3-face. Therefore, f does not lose charge by rule
(R1b).

• If f is a 5-face, then f can be adjacent to at most one 3-face g, since G contains no doubly-
chorded 7-cycle. By (R1a) f loses charge 1

3 across the edge it shares with g, and by (R1b) f
loses charge at most 1

9 across the other four edges. Thus

ν3(f) ≥ `(f)− 4− 1

3
− 4

1

9
=

2

9
≥ 0.

All of the other arguments from the proof of Theorem 5.1 hold, which shows that the resulting
total charge is nonnegative, and hence a minimal counterexample does not exist.

6 No Chorded 7-Cycle

Theorem 6.1. If G is a plane graph not containing a chorded 7-cycle, then G is (4, 2)-choosable.

We prove the following strengthened statement:

Theorem 6.2. Let G be a planar graph with no chorded 7-cycle, and let P be a subgraph of G, where
P is isomorphic to one of P1, P2, P3, or K3, and all vertices in V (P ) are incident to a common
face f . Let L be a (4, 2)-list assignment of G− P and let c be a proper coloring of P . There exists
an extension of c to a proper coloring of G such that c(v) ∈ L(v) for all v ∈ V (G− P ).

Proof. Suppose that there exists a counterexample. Select a counterexample (G,P,L, c) by mini-
mizing n(G)− 1

4n(P ) among all chorded 7-cycle free plane graphs, G, with a subgraph P isomorphic
to a graph in {P1, P2, P3,K3}, a proper coloring c of P , and a (4, 2)-list assignment L of G − P
such that c does not extend to an L-coloring of G. We will refer to the vertices of P as precolored
vertices.

Claim 6.3. G is 2-connected.
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Proof. If G is disconnected, then each connected component can be colored separately. Suppose
that G has a cut-vertex v. Then there exist connected subgraphs G1 and G2 where G = G1 ∪ G2

and V (G1) ∩ V (G2) = {v}, n(G1) < n(G), and n(G2) < n(G). We can assume without loss of
generality that G1 contains at least one vertex of P , so let S1 be the subgraph of P contained in G1.
If G2 contains at least one vertex of P , i.e., if v ∈ S1, then let S2 be the subgraph of P contained
in G2; otherwise, let S2 be the vertex v.

Since (G,P, L, c) is a minimal counterexample, there is an L-coloring c1 of G1 that extends the
coloring on S1. Using the color prescribed by c1 on v, there exists an L-coloring c2 of G2 that
extends the coloring on S2. The colorings c1 and c2 form an L-coloring of G, a contradiction.

Claim 6.4. G has no separating 3-cycles.

Proof. Suppose that P ′ = v1v2v3 is a separating 3-cycle of G. Let G1 be the subgraph of G given
by the exterior of P ′ along with P ′, and let G2 be the subgraph of G given by the interior of P ′

along with P ′. Since P ′ is separating, n(G1) < n(G) and n(G2) < n(G).
Since the vertices in P share a common face, we can assume without loss of generality that

V (P ) ⊆ V (G1). Since (G,P, L, c) is a minimal counterexample, there exists an L-coloring c1 of G1.
Assign the colors from c1 to P ′. Then there exists an L-coloring of G2 extending the colors on P ′,
and together c1 and c2 form an L-coloring of G, a contradiction.

Claim 6.5. If v ∈ V (P ) such that V (P ) ⊆ N [v], then the subgraph of G induced by N(v) is not
isomorphic to any graph in {P1, P2, P3,K3}.

Proof. Suppose that there exists a vertex v ∈ V (P ) where all precolored vertices are in N [v] and
the subgraph G[N(v)] is isomorphic to a subgraph in {P1, P2, P3,K3}. Then consider the graph
G′ = G − v with subgraph P ′ = G[N(v)]. Since |NG[v]| ≤ 4, there exists an L-coloring c′ of
G[N [v]]. Since (G,P, L, c) is a minimal counterexample, c′ extends to an L-coloring of G′, which
in turn extends to an L-coloring of G, a contradiction.

Claim 6.6. If v ∈ V (P ) has dG(v) ≤ 2, then dG(v) = 2 and P is isomorphic to P1, P2, or P3.

Proof. By Claim 6.3, dG(v) 6= 1. If dG(v) = 2 and P ∼= K3, then G[NG(v)] is isomorphic to P2,
contradicting Claim 6.5.

Claim 6.7. P is isomorphic to one of P3 or K3.

Proof. Suppose that P is not isomorphic to either P3 or K3. If P is isomorphic to P1, then
the vertex of P has two consecutive neighbors u1 and u2 not in P ; let U = {u1, u2}. If P is
isomorphic to P2, then some vertex v in P has a neighbor u1 not in P that shares a face with
the edge in P ; let U = {u1}. Let P ′ be the subgraph isomorphic to P3 or K3 given by including
vertices in U . There exists a proper coloring c′ of P ′ that extends the coloring on P . But then
(G,P ′, L, c′) has n(G) − 1

4n(P ′) < n(G) − 1
4n(P ), so there exists an L-coloring of G that extends

c′, a contradiction.

Claim 6.8. If v ∈ V (G− P ), then dG(v) ≥ 4.
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Proof. Suppose that v ∈ V (G − P ) has degree d(v) ≤ 3. Then G − v is a planar graph with no
chorded 7-cycle containing a precolored subgraph P and a list assignment L. Since (G,P, L, c) is a
minimum counterexample, G − v has an L-coloring. However, v has at most three neighbors and
at least four colors in the list L(v). Thus, there is an extension of the L-coloring of G − v to an
L-coloring of G, a contradiction.

Observe that n(G) ≥ 4. Recall that in a configuration (C,X, ex), an L-coloring of V (C) \ X
extends to all of C. Because of this fact, if G contains a reducible configuration (C,X, ex), then
there is a precolored vertex in the set X, or else G−X has an L-coloring that extends to all of G.
Specifically, we will use the fact that G avoids (C2), (C3), (C4), (C5), (C6), (C7), and (C8).

For each v ∈ V (G) and f ∈ F (G) define

µ(v) = d(v)− 4 + 2δ(v) and ν(f) = `(f)− 4 + ε(f),

where δ(v) ∈ {0, 1} has value 1 if and only if v ∈ V (P ), and ε(f) ∈ {0, 1} has value 1 if and only
if the boundary of f is the set of precolored vertices, V (P ). By Euler’s Formula, the initial charge
sum is at most −1. Claims 6.6 and 6.8 assert that the only negatively-charged objects are 3-faces.

For a vertex v, let tk(v) denote the number of k-faces incident to v. Apply the following
discharging rules. Let µi(v) and νi(f) denote the charge on a vertex v or a face f after rule (Ri).

3
8

f

g

e

v

1
3

f

v

4
9

f

(R1a) (R2a) (R2b)

1
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1
8

1
8

f

g

e

h1

e1

h2

e2
h3

e3

3
16

3
16

f

g

e

h1

e1

h2

e2

f2

3
16

3
16

f

g

e

h1

e1
h2

e2

f2

(R1b) (R1c), Case 1 (R1c), Case 2

Figure 10: Discharging rules (R1) and (R2) in the proof of Theorem 6.1.

(R0) If v is a precolored vertex and f is an incident 3-face with negative charge, then v sends
charge 1

2 to f .

(R1) If f is a 3-face and e is an incident edge, then let g be the face adjacent to f across e.
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(R1a) If g is a 5+-face, then f pulls charge 3
8 from g “through” the edge e.

(R1b) If g is a 4-face and f is the only 3-face adjacent to g, then let e1, e2, and e3 be the other
edges incident to g. For each i ∈ {1, 2, 3}, let hi be the face adjacent to g across ei. For
each i ∈ {1, 2, 3}, the face f pulls charge 1

8 from the face hi “through” the edges e and
ei.

(R1c) If g is a 4-face and g is adjacent to two 3-faces f1 and f2 (say f1 = f), then let e1 and
e2 be the other edges incident to g, where the faces h1 and h2 sharing these edges are
6+-faces. For each i ∈ {1, 2}, the face f pulls charge 3

16 from the face hi “through” the
edges e and ei.

(R2) Let v be a 5+-vertex with v /∈ V (P ) and let f be an incident 3-face.

(R2a) If v is a 5-vertex, then v sends charge 1
a to f , when a = max{3, t3(v)}.

(R2b) If v is a 6+-vertex, then v sends charge 1
2 to f .

(R3) If f is a 6-face with ν2(f) < 0 and v is an incident 5+-vertex or an incident vertex in V (P )
with µ0(v) > 0, then v sends charge 1

4 to f .

We claim that µ3(v) ≥ 0 for every vertex v and ν3(f) ≥ 0 for every face f . Since the total
charge sum was preserved during the discharging rules, this contradicts the negative charge sum
from the initial charge values.

Note that 6-faces are not incident to 3-faces since G does not contain a chorded 7-cycle. Observe
that a 6-face f has ν1(f) < 0 if and only if all faces adjacent to f are 4-faces, and each of those
4-faces has two adjacent 3-faces.

Claim 6.9. Let v be a vertex in V (P ). Then µ3(v) ≥ 0. In addition, if v is incident to a 6-face f
with ν1(f) < 0, then µ0(v) > 0.

Proof. By Claims 6.6 and 6.7, we have µ(v) = d(v) − 2 ≥ 0. Note that if µ(v) ≥ 1
2 t3(v) + 1

4 t6(v),
then the final charge µ3(v) is nonnegative. Since d(v) ≥ t3(v) + t6(v), it suffices to show that
µ0(v) ≥ 1

4d(v) + 1
4 t3(v).

Case 1: P ∼= P3. Let v1, v2, and v3 be the vertices in the 3-path P . For i ∈ {1, 2, 3}, µ(vi) =
d(vi) − 2. Since P is not isomorphic to K3, these vertices do not form a cycle, and the face
to which all vertices are incident is not a 3-face. Hence t3(vi) ≤ d(vi) − 1. If d(vi) ≥ 4, then
µ(vi) = d(vi)− 2 ≥ 1

2d(vi) >
1
4d(vi) + 1

4 t3(vi).

If d(vi) = 2, then µ(vi) = 0. If i = 2, then v2 is not incident to any 3-faces since v1 and v3
are not adjacent. If i ∈ {1, 3} and vi is adjacent to a 3-face, then let v′i be the neighbor of vi
not in V (P ). Let P ′ be the subgraph induced by (V (P ) ∪ {v′i}) \ {vi}, which forms a copy of
P3 or K3 in G − vi. For any color c(v′i) ∈ L(v′i) \ {c(vi)}, there exists an L-coloring of G − vi
as (G− vi, P ′, L, c) is not a counterexample; this coloring extends to an L-coloring of G. Thus,
t3(vi) = 0. If vi is incident to a 6-face f with ν1(f) < 0, then the other face incident to vi is a
4-face that is adjacent to two 3-faces. This results in a chorded 7-cycle, a contradiction; thus
(R3) does not apply to vi.

If d(vi) = 3, Claim 6.4 asserts that G has no separating 3-cycles, so then vi loses charge at most
1 in (R0). If vi is incident to a 6-face f with ν1(f) < 0, then the other two faces incident to vi
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are 4-faces and these 4-faces are each adjacent to two 3-faces. This creates a chorded 7-cycle, a
contradiction, so (R3) does not apply to vi and µ3(vi) ≥ 0.

Case 2: P ∼= K3. Let v1, v2, and v3 be the vertices in the 3-cycle P , so µ(vi) = d(vi)−2 for each vi.
By Claim 6.4, G has no separating 3-cycle, so the three vertices are incident to a common 3-face
f with ν(f) = 0. Therefore, each vertex vi sends charge 1

2 to at most d(vi)− 1 incident 3-faces
by (R0). Recall that d(vi) ≥ 3 by Claim 6.6. Suppose that d(vi) = 3. If t3(vi) > 1, the subgraph
of G induced by the neighborhood of vi is isomorphic to P3 or K3, contradicting Claim 6.5. If
d(vi) ≥ 4, then µ(vi) = d(vi)− 2 ≥ 1

2d(vi) ≥ 1
4d(vi) + 1

4 t3(vi). Therefore, µ3(vi) ≥ 0.

Thus, in all cases a precolored vertex v has µ3(v) ≥ 0.

We will now show that all objects that start with nonnegative charge also end with nonnegative
charge.

If f is a 4-face, then (R1b) and (R1c) do not pull charge from f , since this would require f to
be adjacent to a 4-face g that is adjacent to a 3-face t, but then f , g, and t form a doubly-chorded
7-cycle. Thus, ν3(f) = 0 for every 4-face f .

If f is a 5-face, then since G contains no chorded 7-cycles, f is not adjacent to two 3-faces and
f is not adjacent to a 4-face. Therefore, f loses charge at most 3

8 by (R1a), but loses no charge
using (R1b), so ν3(f) > 0 for every 5-face f .

If f is a 6-face, then f is not adjacent to a 3-face since G contains no chorded 7-cycle. Observe
that by Claim 6.3 the boundary of f is a simple 6-cycle. So if f sends charge through an edge e
during (R1), it can send charge 1

8 through e by (R1b), or it can send charge 3
8 through e by (R1c).

The only way that this will result in a negative charge after (R1) and (R2) is for f to send charge 3
8

through each of its six edges by (R1c); this will cause ν2(f) = 2− 6 · 38 = −1
4 . If f has a precolored

vertex v on its boundary, then by Claim 6.9, v has positive charge after (R0); by (R3), f receives
charge at least 1

4 , resulting in ν3(f) ≥ 0. If f has no incident precolored vertices, then since G
contains no (C2), some vertex v on the boundary of f is a 5+-vertex. By (R3) v sends charge 1

4 to
f and hence ν3(f) ≥ 0. Observe the following claim concerning the structure about a vertex that
loses charge by (R3).

Claim 6.10. Let v be a 5+-vertex with the three incident faces f1, f2, and f3, in cyclic order. If
v sends charge to f2 by (R3), then f1 and f3 are 4-faces and f2 is a 6-face.

If f is a 7+-face, then by (R1) f loses charge at most 3
8 through each edge. Thus,

ν3(f) ≥ `(f)− 4− 3

8
`(f) =

5

8
`(f)− 4 > 0.

Therefore, ν3(f) > 0 for every 7+-face f .
Next, we will consider a vertex v not in V (P ).
If v is a 4-vertex, then v does not lose charge by any rule, so the resulting charge is 0.
If v is a 5-vertex, let a = max{3, t3(v)} and v loses charge 1

a t3(v) to incident 3-faces by (R2a). If
(R3) does not apply to v, then v sends charge at most 1 to incident 3-faces and µ3(v) ≥ 0. If (R3)
applies to v, then v is incident to faces f1, f2, and f3 where f1 and f3 are 4-faces and f2 is a 6-face.
Since d(v) = 5 and G has no chorded 7-cycle, the rule (R3) applies at most once. If (R3) applies
once, then t3(v) ≤ 2 and v loses charge at most 2

3 by (R2) and charge 1
4 by (R3), so µ3(v) ≥ 0.

If v is a 6+-vertex, then let k = t3(v) and ` be the number of times (R3) applies to v. Notice
that k ≤ b45d(v)c since G avoids chorded 7-cycles. Further, notice that k + 2` ≤ d(v), since each
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6-face that gains charge from v by (R3) is preceded by a 4-face in the cyclic order of faces around
v. By (R2b), v can lose charge 1

2 to each incident 3-face, and v can lose charge at most 1
4 to each

incident 6-face by (R3). Then v ends with charge

µ3(v) ≥ d(v)− 4− 1

2
k − 1

4
`.

If d(v) = 6, then observe k + ` ≤ 4 and hence µ3(v) ≥ 0. If d(v) = d ≥ 7, then d, k, and ` satisfy
the following linear program with dual on variables a1, a2, and a3:

min d − 1
2k − 1

4`
s.t. d ≥ 7

4d − 5k ≥ 0
d − k − 2` ≥ 0
d, k, ` ≥ 0

max 7a1
s.t. a1 + 5a2 + a3 ≤ 1

− 5a2 − a3 ≤ −1
2

− 2a3 ≤ −1
4

a1, a2, a3 ≥ 0

The dual-feasible solution (a1, a2, a3) =
(
23
40 ,

1
20 ,

1
4

)
demonstrates that d− 1

2k−
1
4` ≥ 7 · 2340 > 4, and

thus µ3(v) > 0 for every 7+-vertex.
It remains to be shown that the clusters receive enough charge to become nonnegative. Since G

contains no separating 3-cycle, G does not contain the cluster (K5c) or the clusters (K6g)–(K6r).
Observe that there is no precolored vertex v of degree at most three where all faces incident to
v have length three. Finally, it is worth noting again that if G contains a reducible configuration
(C,X, ex), then there is a precolored vertex in the set X.

If a vertex v is a 5+-vertex or v ∈ V (P ), we say v is full ; if v is a 6+-vertex or v ∈ V (P ), then
v is heavy. Note that a heavy vertex v sends charge 1

2 to each incident negatively-charged 3-face
by (R0) or (R2b). If P ∼= K3, we call P the precolored face.

f

v

f1
f2 f1

f2
f3

(K3) (K4) (K5a)

Figure 11: Clusters (K3), (K4), and (K5a)

Case 1: (K3) Let f be the isolated 3-face in (K3). If f is the precolored face, then ν3(f) = ν(f) = 0.
Otherwise, the initial charge on f is −1. By (R1), f receives charge 9

8 through its boundary edges,
resulting in a nonnegative final charge.

Case 2: (K4) Let f1 and f2 be 3-faces in a diamond cluster (K4). First, suppose without loss of
generality that f1 is the precolored face. The initial charge of the cluster is −1. Then f2 receives
charge 1 by (R0) and charge 2 · 38 by (R1), resulting in a positive final charge. Otherwise, the
initial charge on the cluster is −2. By (R1), f1 and f2 receive charge 3

8 through each of the two
edges on the boundary of the cluster, resulting in charge −1

2 . If the cluster contains a precolored
vertex u, then it receives charge 1

2 by (R0). Otherwise, since G contains no (C3), there is a 5+

-vertex v incident to both f1 and f2. By (R2), this vertex sends charge at least 1
3 to each of the

faces, resulting in a nonnegative final charge.

Case 3: (K5a) Let f1, f2, and f3 be 3-faces in a 3-fan cluster (K5a), where f2 is adjacent to both f1
and f3. Suppose that the cluster contains a precolored face, so the initial charge on the cluster
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is −2. If f2 is precolored, then the cluster receives charge 4 · 12 by (R0); if f1 or f3 is precolored,
then the cluster receives charge 3 · 12 by (R0) and charge 3 · 38 by (R1). In either case, the final
charge is nonnegative.

If P 6∼= K3 or the cluster does not contain the precolored face, then the initial charge on the
cluster is −3. By (R1), the cluster receives charge 5 · 38 , resulting in charge −9

8 . Note that the
faces f1 and f2 form a diamond and the faces f2 and f3 form a diamond. Since G contains no
(C3), there exists a full vertex v incident to both f1 and f2. Similarly, there exists a full vertex
u incident to f2 and f3. If u 6= v, then by (R0) or (R2), v sends charge at least 1

3 to each of f1
and f2 and u sends charge at least 1

3 to each of f2 and f3, resulting in nonnegative charge on
the cluster. If u = v and v is a heavy vertex, then v sends charge 1

2 to each face f1, f2, and f3,
resulting in nonnegative charge on the cluster. Otherwise, suppose that u = v /∈ V (P ) and v is
a 5-vertex. Since G contains no (C4), there exists another full vertex w that is incident to at
least one of f1 and f2. By (R2a), v sends charge 1

3 to f1, f2, and f3, and by (R0) or (R2), w
sends charge at least 1

3 to one of f1 and f2, resulting in nonnegative charge on the cluster.
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u4 u3

f1
f2

f3

f4 f1
f2
f3

f4
v u5

u4u3

u2

u1

f1

f2
f3
f4

(K5b) (K6a) (K6b)

Figure 12: Clusters (K5b), (K6a), and (K6b)

Case 4: (K5b) Let f1, f2, f3, and f4 be 3-faces in a 4-wheel (K5b). If the cluster contains a
precolored face, then the initial charge on the cluster is −3; the cluster receives charge 5 · 12 by
(R0) and charge 3 · 38 by (R1), resulting in a positive final charge. Otherwise, the initial charge
on this cluster is −4. By (R1), the cluster receives charge 4 · 38 , resulting in charge −5

2 . Let v
be the 4-vertex incident to all four 3-faces. Let u1, u2, u3, and u4 be the vertices adjacent to v,
ordered cyclically such that vuiui+1 is the boundary of the 3-face fi for i ∈ {1, 2, 3} and vu4u1 is
the boundary of f4. Since the cluster does not contain the precolored face, v is not a precolored
vertex. Since G contains no (C3), each ui is a full vertex. When ui is a 5-vertex, it is incident to
two 7+-faces, so ui sends charge 1

3 to each incident 3-face by (R2). Thus, each ui sends charge
at least 2 · 13 to the cluster by (R0) or (R2), resulting in a nonnegative final charge.

Case 5: (K6a) Let f1, f2, f3, and f4 be 3-faces in a 4-strip cluster (K6a). If the cluster contains
the precolored face, then the initial charge on the cluster is −3. If f1 or f4 is precolored, then
the cluster receives charge 3 · 12 by (R0) and charge 4 · 38 by (R1); if f2 or f3 is precolored, then
the cluster receives charge 5 · 12 by (R0) and charge 5 · 38 by (R1). In either case, the resulting
final charge is nonnegative. If the cluster does not contain the precolored face, then the initial
charge on this cluster is −4. By (R1), the cluster receives charge 6 · 38 , resulting in charge −7

4 .
Note that for i ∈ {1, 2, 3}, the faces fi and fi+1 form a diamond. Since G contains no (C3),
there exists a full vertex v incident to both fi and fi+1. Let u1 be a full vertex incident to f2
and f3. Without loss of generality, u1 is not incident to f4, so there is a full vertex u2 incident
to f1 and f2. If u1 is a heavy vertex, the cluster receives charge 3 · 12 from u1 by (R0) or (R2b),
and charge at least 2 · 13 from u2 by (R0) or (R2), resulting in a positive final charge. Otherwise,
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u1 is a 5-vertex, so u1 sends charge 3 · 13 by (R2a), resulting in charge −3
4 . If u2 is incident

to f3, then u2 sends charge at least 3 · 13 by (R0) or (R2), resulting in a positive final charge.
Otherwise, u2 is incident with f1 and f2 but not f3. If u2 is a large vertex, it sends charge 2 · 12
by (R0) or (R2b). Otherwise, since G contains neither a (C3) or a (C4), there is a third full
vertex u3. The cluster receives charge 2 · 13 from u2 by (R2a) and charge at least 1

3 from u3 by
(R0) or (R2). In each case, the resulting final charge is nonnegative.

Case 6: (K6b) Let f1, f2, f3, and f4 be 3-faces in a 4-fan cluster (K6b). Let v be the center of the
fan, with neighbors u1, u2, u3, u4, and u5 where for i ∈ {1, 2, 3}, fi and fi+1 are adjacent on the
edge vui+1. If the cluster contains the precolored face, then the initial charge on the cluster is
−3. If f1 or f4 is precolored, then the cluster receives charge 4 · 12 by (R0) and charge 4 · 38 by
(R1); if f2 or f3 is precolored, then the cluster receives charge 5 · 12 by (R0) and charge 5 · 38 by
(R1). In either case, the resulting final charge is positive.

If the cluster does not contain the precolored face, then the initial charge on this cluster is −4.
By (R1), the cluster receives charge 6 · 38 , resulting in charge −7

4 . If v is a heavy vertex, then
by (R0) or (R2b) v sends charge 4 · 12 to the cluster, resulting in positive charge. Otherwise,
v /∈ V (P ) and v is a 5-vertex, so v sends charge 1 to the cluster by (R2a), resulting in charge
−3

4 . If there is a heavy vertex in {u2, u3, u4}, then that vertex contributes charge 2 · 12 to the
cluster, resulting in a positive charge. If there is no heavy vertex in {u2, u3, u4}, then there is
at least one 5-vertex in {u2, u3, u4} since G contains no (C4). If there are multiple 5-vertices in
{u2, u3, u4}, then each sends charge 2 · 13 to the cluster by (R2a), resulting in positive charge. If
there is only 5-vertex w among u2, u3, and u4, then there is a full vertex z ∈ {u1, u5} since G
does not contain (C4) or (C5); the cluster receives charge 2 · 13 from w by (R2a) and at least 1

3
from z by (R0) or (R2), resulting in positive final charge.
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f4 g
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Figure 13: Clusters (K6c) and (K6d).

Case 7: (K6c) Let f1, f2, f3, and f4 be the 3-faces of this cluster (K6c) where f4 is adjacent to
each fi for i ∈ {1, 2, 3}. If the cluster contains the precolored face, then the initial charge on the
cluster is −3. If one of f1, f2 or f3 is precolored, the cluster receives charge 4 · 12 by (R0) and
charge 4 · 38 by (R1). If f4 is precolored, then the cluster receives charge 6 · 12 by (R0). In either
case, the resulting final charge is nonnegative.

If the cluster does not contain the precolored face, then the initial charge on the cluster is −4.
By (R1), the cluster receives charge 6 · 38 , resulting in charge −7

4 . Let u1, u2, u3, u4, u5, and
u6 be the vertices on the boundary of the cluster ordered such that u2, u4, u6 are the vertices
incident to f1 and f2, f2 and f3, and f3 and f1, respectively. Since G contains no (C3), there
are at least two full vertices in {u2, u4, u6}. By (R0) or (R2), these vertices each send charge at
least 1 to the cluster, resulting in a positive total charge.
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Case 8: (K6d) Let f1, f2, f3, and f4 be cyclically-ordered 3-faces in a 4-wheel with center vertex v
where fi and fi+1 share a common edge for i ∈ {1, 2, 3, 4}, where indices are taken modulo 4; let
g be a 3-face adjacent to f4 but not incident to v, completing our cluster (K6d). If the cluster
contains the precolored face, then the initial charge on the cluster is −4. If f1 or f3 is precolored,
then the cluster receives charge 6 · 12 by (R0) and charge 4 · 38 by (R1). If f2 is precolored, then
the cluster receives charge 5 · 12 by (R0) and charge 4 · 38 by (R1). If f4 is precolored, then the
cluster receives charge 7 · 12 by (R0) and charge 5 · 38 by (R1). In each of the above cases, the
final charge is nonnegative. If g is precolored, then the cluster receives charge 4 · 12 by (R0) and
charge 3 · 38 by (R1), resulting in charge −7

8 . Let N(v) = {u1, u2, u3, u4} where ui is incident
to fi and fi+1 for all i ∈ {1, 2, 3, 4}. Since G does not contain (C3), u1 and u2 are full vertices.
Each of u1 and u2 sends charge at least 2 · 13 to the cluster by (R2), resulting in nonnegative
charge.

If the cluster does not contain the precolored face, then the initial charge on this cluster is −5
and v /∈ V (P ). By (R1), the cluster receives charge 5 · 38 , resulting in charge −25

8 . Since G
does not contain (C3), u1, u2, u3, and u4 are full vertices. By (R0) or (R2), the cluster receives
charge at least 2 · 13 from each of u1 and u2 and charge at least 3 · 13 from each of u3 and u4,
resulting in a positive final charge.

v
u1

u5

u4

u3 u2

f1

f2
f3

f4

f5
u1

z

w

u2

f1

f2

(K6e) (K6f)

Figure 14: Clusters (K6e) and (K6f).

Case 9: (K6e) Let f1, f2, f3, f4, and f5 be the cyclically-ordered 3-faces in a 5-wheel with center
vertex v where fi and fi+1 share a common edge for i ∈ {1, 2, 3, 4, 5}, where indices are taken
modulo 5. Let N(v) = {u1, u2, u3, u4, u5} where ui is incident to fi and fi+1 for i ∈ {1, 2, 3, 4, 5}.
If the cluster contains the precolored face, then the initial charge on the cluster is −4. The
cluster receives charge 6 · 12 by (R0) and charge 4 · 38 by (R1), resulting in a positive final charge.

If the cluster does not contain the precolored face, then the initial charge is −5 and v /∈ V (P ).
By (R1), the cluster receives charge 5 · 38 , and by (R2), the cluster receives charge 1 from v,
resulting in charge −17

8 . Since G does not contain (C4) or (C6), there are at least three full
vertices in N(v). If N(v) contains at least three heavy vertices, then the cluster receives charge
at least 6 · 12 by (R0) or (R2b), resulting in a positive final charge. If N(v) contains exactly two
heavy vertices, then the cluster receives charge 4 · 12 by (R0) or (R2b) and charge 2 · 13 from a full
vertex by (R2a), resulting in positive charge. If N(v) contains exactly one heavy vertex, then
the cluster receives charge 2 · 12 by (R0) or (R2b) and charge 2 · 13 from each of two full vertices
by (R2a), resulting in positive final charge.

If N(v) contains no heavy vertices, then there are at least three full vertices in N(v). Since G
does not contain (C4), there are at least two nonadjacent 5-vertices in N(v). Further, since G
does not contain (C6), (C7), or (C8), there are at least four 5-vertices in N(v). The cluster
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receives charge 2 · 13 from each of these vertices by (R2a), resulting in a positive final charge.

Case 10: (K6f) Let f1 and f2 be the interior 3-faces in the two overlapping 4-wheels that make
up the cluster (K6f). Let u1 and u2 be the shared vertices of f1 and f2 and let z and w be the
vertices incident with f1 and f2, respectively, that have not yet been labeled. Since G contains
no (C3), at least one of u1 and u2 is in V (P ). Then since all the precolored vertices lie on a
common face, the cluster contains the precolored face, so the initial charge is −5. If f1 or f2 is
precolored, then the cluster receives charge 8 · 12 by (R0) and charge 4 · 38 by (R1), resulting in
a positive final charge. If one of the other 3-faces is precolored, then the cluster receives charge
6 · 12 by (R0) and charge 3 · 38 by (R1), resulting in charge −7

8 . Since G contains no (C3), one of
w and z is a non-precolored 5+-vertex. This vertex sends charge at least 3 · 13 to the cluster by
(R2), resulting in a positive final charge.

We have verified that the total charge after discharging is nonnegative, contradicting the neg-
ative initial charge sum. Thus, a minimal counterexample does not exist and every planar graph
with no chorded 7-cycle is (4, 2)-choosable.

7 Conclusion and Future Work

We proved that, for each k ∈ {5, 6, 7}, planar graphs with no chorded k-cycles are (4, 2)-choosable.
Our methods for proving reducible configurations created several large classes of reducible config-
urations, such as templates; naturally, there are many more reducible configurations than the ones
we explicitly used. One could likely prove that if G is a planar graph with no chorded 4-cycle
and no doubly-chorded 7-cycle, then G is (4,2)-choosable using methods similar to those in this
paper. We were unable to extend these results to prove Conjecture 1.3, that all planar graphs are
(4, 2)-choosable.
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A Large Reducible Configurations

In the proof of Theorem 4.1, we demonstrated that no minimal counterexample exists by showing that
there exists a reducible configuration (C,X, ex) where G contains a copy of C[X] as an induced subgraph
(and also the copy agrees with the external degrees). In this appendix, we provide the details that clarify
this assumption. By Lemma 3.2, we can relax the condition that C[X] is an induced subgraph. We will
demonstrate that the configurations that appear after some vertices in X are merged (while also preserving
the face lengths, vertex degrees, and lack of chorded 5-cycle) result in reducible configurations.

Let (C,X, ex) be a reducible configuration and let {x1, x′1}, . . . , {xt, x′t} be a list of vertex pairs in X.
For these configurations, we may identify some 3-cycles and 5-cycles that are required to be 5-faces (in the
context of the proof of Theorem 4.1). The resulting configuration (C ′, X ′, ex) where C ′ and X ′ are modified
from C and X by merging xi with x′i and removing any multiedges or loops that result. We say a list
{x1, x′1}, . . . , {xt, x′t} is valid for (C,X, ex) if the resulting configuration (C ′, X ′, ex) may appear in a planar
graph of minimum degree at least four containing no chorded 5-cycle. There are three situations that can
occur when we perform this action.
Pairs too close: If some pair {xi, x′i} have d(xi, x

′
i) ≤ 2, then either we create a loop or a multiedge when

merging xi and x′i. This will reduce the degree of the resulting vertex, in addition to possibly shortening
known 3- and 5-cycles. Since distances only decrease as vertices are merged, a pair failing this property will
not appear in any valid list of pairs.
Pairs creating chord: If merging xi and x′i creates a chorded 5-cycle, then this configuration would not
appear in the minimal counterexample from Theorem 4.1. Since distances only decrease as vertices are
merged, a pair failing this property will not appear in any valid list of pairs.
Reducible pairs: If merging xi and x′i does not fit in the above two cases, then we will demonstrate that
the resulting configuration is reducible. Even if merging one pair of vertices creates a reducible configuration,
we need to check all possible lists of pairs that contain that pair.

After considering all pairs that could be identified, observe that in each case there is no set of three or
more vertices where every pair can be identified.

In the following tables, we list one of the configurations (C10)–(C21), label the vertices, and list all pairs
of vertices into the three categories above. In the case of reducible pairs, we present the contracted graph.
Most of these contracted graphs contain a copy of (C1), (C2), (C10), (C11), or (C12). The only exceptions
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are the contracted graphs derived from (C16), but each of these configurations has an Alon-Tarsi orientation
and hence is reducible.

(C10)

ab

c
d

e

f Pairs too close: ab, ac, ad, ae, af , bc, bd, be, cd, ce, cf , de, df ,
ef .

Pairs creating chord: bf

Reducible pairs: None remain.

(C11)

a
b

c

d
e

f

g

Pairs too close: ab, ac, ad, ae, af , ag, bc, bd, bf , bg, cd, ce, cg,
de, df , dg, ef , eg, fg.

Pairs creating chord: be, cf

Reducible pairs: None remain.

(C12)

a

b

c

de

f

Pairs too close: ab, ac, ad, ae, af , bc, bd, be, bf , cd, ce, cf , de,
df , ef .

Pairs creating chord: None remain.

Reducible pairs: None remain.

(C13)

g
h

a

b

c

d

e

f

Pairs too close: ab, ac, ad, ag, ah, bc, bg, bh, cf , cg, ch, de, df ,
dg, dh, ef , eg, eh.

Pairs creating chord: ae, af , bf , bd, cd. ce.

Reducible pairs: be (contains (C1))

g

h

a be

c

d

f

Contains (C1) on 4-cycle be, f, g, c.
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(C14)

ab

c d

i

e f

gh

Pairs too close: ab, ac, ad, ae, ag, ah, ai, bc, bd, bh, bi, cd, ci,
de, dh, di, ef , eg, eh, ei, fg, fg, fi, gh, gi, hi.

Pairs creating chord: af , be, ce, ch, df , dg.

Reducible pairs: bg (contains (C11)), cf (contains (C11)), bg
and cf (contains (C12)).

a

bgc

d

i

e

f

h

a

b cf

d

i

e

g

h

a

bg

cf

d

i

eh

Contains (C11) Contains (C11) Contains (C12)

after deleting vertex h. after deleting vertex d. after deleting vertex h.

(C15)

ab

c d i
e f

gh

Pairs too close: ab, ac, ad, ae, ag, ah, ai, bc, bd, bh, bi, cd, ce,
ci, de, df , dh, di, ef , eg, eh, ei, fg, fh, fi, gh, gi, hi.

Pairs creating chord: af , ag, be, bf (bf, a, i, h, g, bf), bh, cg
(cg, d, i, e, f, cg), ch, dg.

Reducible pairs: bg (contains (C2)), cf (contains (C1)), bg and
cf (contains (C1)).

a

bgc

d

i

e

f

h

a

b

cf

d
i

e
g

h

a

bg

cf

d

i

eh

Contains (C2) Contains (C1) Contains (C1)

on 6-cycle bf, f, e, i, d, c. on 4-cycle cf, e, i, d. on 4-cycle cf, e, i, d.
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(C16)

a
b

c d

e

j fk
`
m

g
h

i

Pairs too close: ab, ac, ad, ae, af , ag, ai, aj, ak, am, bc, bd, be,
bf ,bj, bk, b`, bm, cd, ce, cj, cm, de, df , di, ef , eg, eh, ei, ej, fg,
fh, fi, fj, gh, gi, hi, jk, j`, jm, k`, km, `m.

Pairs creating chord: ah, a`, bh, bg, bi, cf , ck, cg, ci, c`, dg, dh,
dj, dk, dm, ek, e`, em, fk, f`, fm, gj,gk, gm, hj, ij, ik, im.

Reducible pairs: ch (has Alon-Tarsi orientation), d` (symmetric
to ch), hk (has Alon-Tarsi orientation), hm (has Alon-Tarsi orien-
tation), h` (has Alon-Tarsi orientation), g` (symmetric to hk), i`
(symmetric to hm).

a
b

ch

d
e

j
f

k
`
m gi

a
b

c d

e

j f

`

m

g

hk

i

a
b

c d

e

j f

k

m

gh`

i

a
b

c d

e

j
f

k

`
ghm

i

(C17)

ab

c

d

h

e

f
g

Pairs too close: ab, ac, ad, ae, af , ag, ah, bc, bd, be, bh, cd, ce,
cf , ch, de, df , dg, ef , eg, fg.

Pairs creating chord: bf , bg, cg, dh, fh, gh.

Reducible pairs: None remaining.
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(C18)

ab

c d

h
e

f
g

Pairs too close: ab, ac, ad, ae, af , ag, ah, bc, bd, be, bh, cd, ce,
cf , ch, de, df , dg, dh, ef , eg.

Pairs creating chord: bf , bg, cg, eg.

Reducible pairs: None remaining.

(C19)

ab

c

d
j

i e f

gh

Pairs too close: ab, ac, ad, ae, ag, ah, ai, bc, bc, bh, bi, bj, cd,
ci, cj, de, dh, di, dj, ef , eg, eh, ei, fg, fh, fi, gh, gi, hi.

Pairs creating chord: af , aj, be, ce, cf (cf, e, i, d, j), cg
(cg, h, i, d, j), ch, df , dg.

Reducible pairs: bf (contains (C10)), bg (contains (C2)).

a

bfc

d

i

e
gh

a

bgc

d

j

i e

f

h

Contains (C10) Contains (C2)
on 5-cycle h, g, bf, e, i and

vertex a.
on 6-cycle bg, f, e, i, d, c.
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(C20)

ab

c d

k

i

j
e f

gh

Pairs too close: ab, ac, ad, ae, ah, ai, aj, ak, bc, bd, bi, bk, cd,
ci, cj, ck, de, dh, di, dj, ef , eg, eh, ei, ej, fg, fh, fi, fj, gh, gi,
hi, hj, ij, ik.

Pairs creating chord: af (af, e, j, d, i), ag (ag, f, e, j, i), be,
bf (bf, a, i, j, e), bg (bg, h, i, a, k), bh, bj, ce, cf (cf, d, i, j, e), cg
(cg, h, i, j, d), ch, df , dg, dk, ek (ek, j, d, i, a), fk (fk, e, j, i, a), gj,
gk (gk, h, i, a, b), jk (jk, d, c, b, a).

Reducible pairs: hk (contains (C10)).

a

b

c d

hk

i
e f

g

Contains (C10) on 5-cycle hk, g, f, e, i and vertex a.

(C21)

ab

c d

k

i

j
e f

gh

Pairs too close: ab, ac, ad, ae, ah, ai, aj, ak, bc, bd, bi, bk, cd,
ci, cj, ck, de, dh, di, dj, dk, ef , eg, eh, ei, ej, fg, fh, fi, fj, gh,
gi, hi, hj, ij.

Pairs creating chord: af (af, e, j, d, i), ag (ag, f, e, j, i), be, bf
(bf, a, i, j, e), bh, bj, ce, cf (cf, d, i, j, e), cg (cg, h, i, j, d), ch, df ,
dg, dk, ek (ek, j, i, d, c), gj, hk (hk, i, a, b, c), ik, jk (jk, i, a, b, c).

Reducible pairs: fk (Contains (C11)), gk (Contains (C11)), bg
and fk (Contains (C12)). (Note: if we identify only bg, then k
must be identified with f in order to preserve that g has total
degree four.)

a

bc

d

fk

i
e

g
h a

b

c

d

gk

i
e

f

h
a

bg

c

d

i
e

fk

h

Contains (C11) Contains (C11) Contains (C12)
after deleting vertices c

and d.
after deleting vertices c

and d.
after deleting vertices c

and d.
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